

linus.lim@arup.com

February 2009

Structural fire analysis for a perimeter braced-frame structure

Allan Jowsey, Linus Lim & Barbara Lane

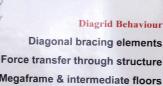
ArupFire

13 Fitzroy Street London W1T 4BQ UK

Tel: +44 (0) 20 7755 3788 Fax: +44 (0) 20 7755 2001 Web: www.arup.com/fire

INTRODUCTION

Analysis of highly complex structural forms in fire can bring value to a design framework.


Quantifying the effect of fire on high-rise complex structural forms can lead to cost effective yet intrinsically more robust designs being formulated in the commercial domain.

A greater understanding of structural systems in fire allows for increased safety and efficiency in design.

BACKGROUND

This poster demonstrates key performance issues identified through advanced analysis, which would not have been identified if the building was protected to typical Building Codes

A case study is given of a proposed iconic sixty-three storey office building in the UK and its response when exposed to a severe single floor fire. The structure is a composite steel framed building with a braced external tube stability system.

Composite Columns

Concrete filled steel tubes
How to model? Validation?

Temperature variation over cross section

Cellular beam behaviour - web-post buckling

Partial shear connection in fire

Design Fire

Severe full floor involvement

Trapezoidal Concrete Deck

Heat transfer to top flange of steel beams

Resulting steel beam temperatures

OUTCOME & CONCLUSIONS

An understanding of the strengths and weaknesses of structural design in terms of fire for tall buildings in general and specific to this structure.

LEVEL 44

A reduction in the applied fire protection to structural systems can provide a robust and safe, yet value engineered solution.

LEVEL 5 - Megaframe floor