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Introduction
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Steel columns are efficient structural elements both in terms of

construction time and load bearing capacity. Steel is vulnerable to fire,

however, and steel structures, potentially exposed to fire, require a

particularly careful design. This especially holds true for steel

columns as they are loaded in compression and are thus prone to

buckling. With an increase of temperature, strength of steel and the

stiffness of columns decrease leading to buckling at an even much

lower level of external loading than at room temperature. We can find

numerous results of experiments on steel columns in fire. Yet

extensive parametric studies of behaviour of steel columns in fire can

only be performed with numerical programs previously validated with

the results of experiments. These programs are rather complex and not

appropriate for a routine engineering usage. Therefore engineers will

rather use simplified, practical methods such as those given in

building codes, e.g. Eurocode 3, and BS595. These codes offer

methods for the fire analysis for isolated columns, which, however,

may not result in sufficiently reliable quantitative predictions of the

fire bearing capacity of a column.
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Presented analytical procedure for the determination of the critical temperature

Euler’s columns exposed to fire

Nonlinear material model at elevated

temperatures according to EC3 is used

axial and flexural strains are considered

shear strains are neglected

Procedure of fire analysis

column is straight and

geometricaly perfect,

temperature field is constant,

Kinematically exact planar beam

model of Reissner:

Preliminaries:
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Phase I

Procedure of fire analysis

Phase II

Determination of ambient

temperature and temperature

field over the cross-section

of steel column;

natural fire
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usage of fire curves,

ISO834, Ec1,...;

temperature field in column and

its cross-section is constant
corresponding governing equations

of such a beam model are

Determination of the stress and

strain field due to a combined

effect of mechanical and

temperature loads

Reissner's geometrically exact

beam theory

Principle of additivity of strains

simplified solution, Eurocode 3

Determination of buckling load

linearization of the governing equations

around the fundamental solution = 0)

,
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( , critical axial strain

and critical temperature) :

o determine the buckling load, the following set

of non-linear algebraic equations for the three

unknowns critical axial force

has to be solved
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The non-trivial solution of the

homogeneous system of linear algebraic

equations is possible only if the

determinant of the system matrix is zero
After a systematic elimination of the unknowns is made,

we end up with the system of two linear differential

equations with constant coefficients:
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Numerical example

Relationships between the critical

stress ratio

different temperatures

and the slenderness,

at
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Conclusions
Considering that steel at high

temperature behaves in

accordance with the material

model proposed by EC 3, the

critical temperature is

determined exactly

simplified method proposed

by EC 3 can be unsafe for

moderate slendernesses

buckling appears to be the

only mode of fracture of

columns due to fire and

critical temperature highly

depends on both the

slenderness of a column and

the material model of steel
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