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Definition and selection of design fire scenarios — Initial considerations
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FEM and thermo-plastic transient analysis
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Safety check
The structural performance in presence of fire includes requirements for fire resistance for the structural elements Domain Units Fire resistance Fire severity
(e.g. beams, slabs, columns) or for the structural system as a whole (avoidance of excessive vibrations, etc.). Time Hours Time over the structure is weakened Duration of fire
A very important step to guarantee a pre-set level of safety is to verify that the resistance of the structure under fire . . .
A Very imp =P 10 guarante P : y y . . Temperature  |°C Temperature over the structure is weakened | Maximum temperature reached during fire
Is higher than the fire severity (fire resistance > fire severity). Three techniques are broadly accepted for checking _
the fire resistance, respectively in the time, temperature and resistance domain. Resistance KN or KNm | Load bearing capacity at high temperature | Applied load during fire
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