Seinäjoen ammattikorkeakoulu seinäjoki university of applied sciences

FIRE LOAD SURVEY OF COMMERCIAL PREMISES IN FINLAND

Application of Structural Fire Design, 29th April 2011, Prague, Czech Republic

Jouni Björkman PhD

29th April 2011

29.4.2011

Authors

- Jouni Björkman, PhD, Seinäjoki University of Applied Sciences, Seinäjoki, Finland, corresponding author
- Veli Autio, B.Sc (Eng.), Seinäjoki University of Applied Sciences, Seinäjoki, Finland
- Heikki Ylihärsilä, Lic.Tech., Seinäjoki University of Applied Sciences, Seinäjoki, Finland
- Peter Grönberg, M.Sc(Eng.), Technical Research Centre of Finland (VTT), Espoo, Finland
- Markku Heinisuo, PhD (Eng.), Tampere University of Technology, Seinäjoki, Finland

Introduction

- Fire load is an important parameter in performance based fire safety design (overall and structures)
 - calculations, e.g. fire development, structure heating and response etc. need fire load input data
- By using design fires (integral of which is fire load), temperatures in the vicinity of structures and further temperatures in structures can be calculated and the response determined
- In Finland and many other European countries the new Eurocodes (EN 1991-1-2, 2003) relating the fire load are being taking into account
- Eurocode fire loads not allowed to apply in Finland and many other countries
- Fire load data especially for shopping malls and shops needed
- Fire load
 - movable (items of different materials in an enclosure)
 - fixed (linings: floor, walls, ceiling)

Material and methods

- Thirty shops and their relating spaces with different sizes and types in Seinäjoki and its surroundings were investigated in Finland
- The smallest shops typically special shops in shopping malls the largest shops groceries, building material, household appliance and furniture shops
- Associated spaces mostly storages (17), social rooms (4) and offices (3)
- Investigated floor area almost 28000 m².
- Smallest shops 54 m² largest shop 4550 m² with a 800 m² storage
- Burning materials: wood, textiles, plastic, paper, miscellaneous
- Measuring devices: weighers, rulers, laser systems
- Masses were weighed or evaluated from the volume and density
- Fire load was calculated by multiplying the mass and the calorific value of the material
- Suitability of lognormal and Gumbel –distribution to measured fire load density data was considered

Results

- Variation of the fire load of associated spaces bigger than in shops
- Fire load diversity of certain shop types very similar (e.g. in textile shops mostly textiles)
- Plastics most in household appliance and toyshop
- Wood most in furniture and decoration shops
- Miscellaneous most in groceries and chemists's shop
- Paper common in book shops and shoe shops
- Measured and calculated fire load density function follows lognormal distribution significantly more reliably than the Gumbel (minimum) distribution and slightly more reliably than Gumbel(maximum) –distribution
- The results are corresponding in the case of associated spaces
- The final result: Lognormal distribution describes the measurement based fire load densities in the most reliable way.

Fitted density functions f(x) and cumulative functions F(x) for shops

Jouni Björkman