

International Conference APPLICATIONS OF STRUCTURAL FIRE ENGINEERING

Prague 29-30 April 2011

COMPUTATIONAL MODELLING FOR PERFORMANCE BASED FIRE ENGINEERING (PBFE)

Francesco Petrini, Konstantinos Gkoumas Sapienza University of Rome, School of Engineering, Rome, Italy

Motivations of the present study

- Now days **common practice** in fire safety engineering is moving toward PBFE.
- Complex structures can not be designed against fire by prescriptive approaches but the investigation of their performance under fire needs the knowledge of advanced computational methods.
- The application of **PBFE** concepts to **complex structures** implies some additional difficulties with respect to the case of ordinary structures

PBFE- Ordinary vs. Complex Structures **COLLAPSE** and **STRUCTURE FIRE SCENARIOS FIRE PROPAGATION PERFORMANCE** ORDINARY Well defined and Usually Well defined limited in negligible • On single (key) number elements **Application 2 Application 1** EX COMPL **Not easily** NON negligible! **Not easily** definable definable **Structure** as

Nonlinear

behavior

High redundant

Complex

geometry

Extension

Complex

compartimentation

whole

Application 1: a steel structure for Helicopters storage

High redundant structure

Application 2: a steel exhibition pavilion

System approach: components

A decomposition of the structure is shown in figure, four principal components are identified and hierarchically ordered. A global or local failure of such substructures can be directly connected with the lack of performances hierarchically ordered in the same manner

Components Performance (DM) evaluation

Fire modeling by the ISO 834 curve or by CFD

Scenario 2

Scenario 6

Heated elements are located only inside the tributary area of the scenario

CFD simulations

Conclusions and considerations

The **Performance-Based Design (PBD)** approach is the best way to conceive and assess complex structural systems under fire action.

Specific considerations are:

- the **system approach** is a powerful tool to rationally carry-out the **PBD** of complex structures. Concepts of these two frameworks can be profitably integrated in PBFD approach.
- Even though in complex situations simplified (**nominal fire**) and advanced methods (**CFD analyses**) for the fire modeling apparently conduct to similar results, a detailed description of the structural response highlights the great difference of the two methods in obtaining the structural response.

Acknowledgments

Filippo Gentili and **Chiara Crosti** from Sapienza University of Rome are gratefully acknowledged.

Motivations of the present study

- Now days **common practice** in fire safety engineering is moving toward PBFE.
- **Complex structures** can not be designed against fire by prescriptive approaches but the investigation of their performance under fire needs the knowledge of advanced computational methods.
- Advanced computational methods are now available.

Performance based fire design (PBFD)

Application 1: a steel structure for Helicopters

storage

Identification of fire risk prone areas in an industrial facility

- The central zone of the building (Area A).
- The central zone of the span (Area B).
- The outer zone (Area C).

Performance Evaluation

N°	Performance requirement	Scenario 1	Scenario 2	Scenario 3	Performance result
1	No collapse for components of hierarchies 1 and 2 for 15 minutes	Dz_max (15min)= = 0.128 m the columns instability does not arise	Dz_max = =0.057 m the columns instability does not arise	Dz_max = = 0.102 m the columns instability does not arise	Satisfied
2	a) moderate damage (DM<5%) for components of hierarchies 1, 2, average damage (DM<10%) for components of hierarchy 3 b) No progressive collapse	DM _{1,} >5% at t=500 s <u>FAIL</u> the progressive collapse does not arise			FAIL for scenario 1

Application 2: a steel exhibition pavilion

REAL STRUCTURE

Fire modeling by the ISO 834 curve

Scenario 2

Scenario 6

Heated elements are located only inside the tributary area of the scenario

Further developments

Deformed shape (nominal fire)

vertical roof displ. Dz= -0.1868 m ateral column disp. Dx=-0.1344 m

Axial force of a heated element

Deformed shape (CFD fire)

vertical roof displ. Dz= -0.8243 m lateral column disp. Dz= -0.6353 m

Axial force of a heated element

Complex structures and LPHC events

plex

tures

nt

bability

nts

Approach for

	Ordinary structures	Complex structures		
Design approach	Prescriptive - PBD	PBD		
Minimum check level	Element	Element – Global (for robustness assessment)		
Models	Simple-Ordinary	Advanced		
Approach for investigations	Probabilistic (Performance = structural risk for a specific limit sate)	Heuristic (Performance = "impact", as consequence of the hazard)		
Fire scenarios	Easily identified and limited in number	Not trivial to define and great in number		
Definition of and collapse	Simple-Ordinary	Not trivial (e.g. for high redundant structures)		

Ordinary events

LP-HC events

Heuristic (incomplete