

- Shear crack fully forms at peak load
- Two groups of post-peak frictional strength
- Frictional strength governed by: concrete-steel bond, dowel action & aggregate interlock
- Initial stiffness & peak strength reduce with temperature, whereas peak strength displacement increases
- Again two clear groups:
 low temperatures → low displacements
 high temperatures → high displacements
- Low temperatures: diagonal tension cracks formed and then coalesced into a shear crack
- High temperatures: straight shear crack formed
- Extensive cover bursting at high temperature, leading to increased reinforcement debonding and decreased concrete confinement

Summary

- Residual compressive and tensile concrete strengths decreased with temperature
- Less pronounced shear strength decrease with temperature, due to steel
- Residual shear strength of RC is: governed by interaction of concrete and steel through shear mechanisms