

SIMPLIFIED METHOD FOR TEMPERATURE DISTRIBUTION IN SLIM FLOOR BEAMS

R. Zaharia, D. Duma, O.Vassart, Th. Gernay, J.M. Franssen

floating screed/concrete poured in situ

filler concrete

"Classic"

- temperature in the steel beam easy to calculate

Slim Floor

- due to the presence of the concrete, a proper temperature distribution in the steel beam may be calculated by numerical anlysis A parametric study based on numerical simulations using SAFIR was done, in order to propose simple formulas for the calculation of the temperatures in various points in the cross-section of Slim Floor beams.

Temperature in the bottom flange

$$T_i = A_i t_{pl}^2 + B_i t_{pl} + C_i$$

Time [min]	A_{i}	B _i	C _i
30	0.113	-12.50	760
60	0.130	-11.80	980
90	-	-2.60	990
120	-	-1.25	1025

Temperature in the web of the steel profile

$$T_{w} = k_{1} e^{k_{2} z}$$
$$k_{1} = A_{w} \ln(t_{pl}) + B_{w}$$
$$k_{2} = C_{w} \ln(t_{pl}) + D_{w}$$

Time [min]	A_w	\boldsymbol{B}_{w}	C _w	D_w
30	-140.70	832.42	0.0317	-0.230
60	-103.80	968.60	0.0232	-0.182
90	-108.60	1146.70	0.0198	-0.154
120	-70.44	1124.40	0.0158	-0.134

Temperature in the rebars

$$T_{c} = k_{3} e^{k_{4} z}$$
$$k_{3} = A_{c} \ln(t_{pl}) + B_{c}$$
$$k_{4} = C_{c} \ln(t_{pl}) + D_{c}$$

Time [min]	A_{c}	B _c	C_{c}	D_{c}
30	-6.90	612.67	0.0009	-0.342
60	-4.06	834.64	-0.0005	-0.240
90	-2.71	970.63	-0.0005	-0.181
120	-1.37	1043.80	-0.0005	-0.150

- The temperature distribution on the cross-sections of the composite Slim Floor beams subjected to ISO fire was investigated using numerical methods and some simple formulas have been developed for determining the values of temperatures in various points, by means of a parametric study.

- Using these formulas, the load bearing capacity of the beams may be calculated, by means of a simple analytical approach, by considering each part of the cross-section that contributes to the load bearing capacity with the corresponding reduced resistance, function of the temperature.

Thank you for your attention !

Assoc. Prof. Raul Zaharia

The "Politehnica" University of Timisoara

