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INTRODUCTION 4 STRESS AND TEMPERATURE CONTROLLED INPUT FUNCTION
Although identified on the basis of so-called instationary creep-tests the - CREEP (s. Fig. 3, 4, 5 and 6)

constitutive model of Eurocode 3 (EC3) represents a non-linear rate- g

independent relationship between stress and mechanical strain. As a gmech — q - g (0) = (8)
consequence some important phenomena cannot properly be de- /1(6’,0*—0"5"”)]&?0(6’)

scribed: E.g. creep or relaxation at constant temperature, creep or relax-

ation at non-monotonic temperature rates or sensitivity of the transient

creep process on the temperature rate. o i =X (9, Sl = e g ) &= e (D)= 10 (9)

1 CONSTITUTIVE EQUATION AND TESTING MACHINE AS AN

5

OPERATOR o 6=0
Based on the capabilities of a servocontrolled material testing system e / _ J T R R
(s. Fig. 1) the material as well as the model is looked upon as an operator |
(Krempl, 1974). It maps a time-dependent input (loading function) into a S
corresponding time-dependent output (response function). The experi-
mental input-output relationship corresponds to a mathematical opera-

tor (Onat, 1972), i.e.
o(t)= § (&(1).6(7)) (1)
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Eqg. (1) defines an operator, which assigns with every strain input &(t) qd %

Temperaturd| °C]

and temperature input 6(t) on [0,t] a stress output o(t). It is a challenging g &5 CRENEINTE BT NSpene ) STEEEeliall) o e e e e o e e e e (R

Diagram for Creep and Relaxation at Constant

task for the experimenter to identify the properties of this operator, which Temperature (7 K/min) at Different Constant Stress Levels
represents the material and is referred to as a constitutive equation. This [ A T
equatiOn IS never obtained direCtly because Iin an eXperiment it Is On|y B R e ABE
possible to obtain a response function. Therefore, a constitutive equa- |0
tion must be constructed in such a way that it gives for a certain input the

corresponding output like the tested material.

2 EC3 MODEL

The constitutive eauation of EC3, i.e. A
e f (E_m : H) (2) OUTPUT |- &| wpur

defines a one-dimensional non-linear alge- . o T ) e T
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braic relation between stress o, infinitesimal o me m me m B o me W so B0 B0 w0 ow b T s oo
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mechanical strain em, and temperatu re 0. It i Fig. 5: Mechanical Strain at Constant Stress (100 MPa)  Fig. 6: Mechanical Strain at Constant Stress (100 MPa) at

looks like a non-linear thermo-elastic consti- G&‘ at Different Temperature Rates Different Piecewise Constant Temperature Rates
tutive model. Therefore by definition eq. (2) is i 5 COMPARISON BETWEEN MODEL AND EXPERIMENT IN

rate-independent. Another point of view is NON-MONOTONIC TRANSIENT CREEP TEST (s. Fig. 7)

achieved through the well known fact, that the = i e : s
experimental basis of eq. (2) are so-called| | /_igjfi sl I} E#MMMM BN N T T e
instationary creep tests. It can be shown that 1 = 2 " 5 0f - fatislie Spanmer ™
eq. (2) is derived through the usage of| | o s k— * | TNEUT = - Gesamispanmungo
response functions as constitutive equations. | " 100 e ; ; ; ; ; ; ; =
AS a reSUIt the phenOmenon Of Creep at :9: gzijégoller 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
constant temperature and the influence of the : 1 S | e
Fig. 1: Constitutive Equati d Material
tjemp_egaéure rate on creep cannot be "™ " onermtor (Korzen, 1987) = 0 A [
escribed. = 1r 1| thenmische Detmunge
% B | | —— Gesamtdehnunge
3 CONCEPT OF A CONSTITUTIVE MODEL 5 ¢
Our model is based on the very classical 3-parameter solid of visco- T T T T TR e —
elasticity (Flugge, 1975). Only two main modifications are introduced: T T
(1) the strain is replaced by the mechanical strain and (ii) the static S sl T T B
stress is a rate-independent functional of the deformation variable: T a0p ST : R R f e
1 ?(é 300_; o o o g o o o o T Temperaturbelastunge
: : =200 T TN
o =— oc—c" |+E,(8)é™",a(0)=0 (3) E wl T~
stat 0 1001
/1(9,6—0' ] 0
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Fig. 7: Input (Temperature, Stress) and Output (Strain) of Non-Monotonic Transient Creep Test at Constant Stress
rj_smr = ¢ (9 Slfgi?(é_ﬂ?f?fh) E'm O_smr )‘E-_mec‘h G_er (0) —0 (4) (100 MPa) and Constant Absolute Value of Temperature Rate (7 K/min)
6 CONCLUSIONS
An alternative constitutive equation approach within the operator
Q)E (9) -l !_”: ”(‘E-.mf?dr) O_smr - E (Q)Em.ﬁ?ch ] . i . ] e i
()= E.(6) P(O)E, SIS p (5) terminology is presented together with its basic capabilities. Finally the
g\.)=L, BO)E (9)_K.(g)w-g}?(é_mecﬂ)[O_smr i (g)grﬂfw‘h] behaviour of the proposed model is compared with the results of a
g | P challenging experiment related to transient creep, and demonstrates a

quite good correlation.
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