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EC3-1.8 Stiffness classification of joints
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Kb=8 (braced frames)
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Other  classifications

Strength:

• “Full-strength”: Bending strength > Strength of member.

• “Partial-strength”

• “Pinned”: Bending strength < 0.25 Strength of member.

Ductility:

• “Ductile/Class 1”: Sufficient rotation capacity to develop 
plastic mechanism.

• “Semi-ductile”

• “Brittle/Class 3”: Can only be used in elastic design.



Component Modelling at 
Ambient Temperature



Beam web
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EC3-1.8 extended end-plate joint model
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Equivalent spring model 
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Simplified spring model
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Moment-rotation behaviour in fire



Semi-rigid behaviour of connections in  fire: 
original work

Late 80s – early 90s

• Design opportunity? Interest particularly 
based on using connection residual 
stiffness and strength to enhance the fire 
resistance of “simple” steel beams.

• Analytical studies to assess the likely 
advantages/problems.



Semi-rigid behaviour of connections in  fire: 
cruciform tests

Mid – 1990s

• Cruciform tests to create small database of M-φ
curves.  Semi-empirical models to rationalise 
results.

• 2 successive experimental projects at BRE 
Garston (Lennon) in “portable” furnace.

1. First series (Leston-Jones) tested a limited 
range of small non-composite flush-
endplate connections.

2. Second series (Al-Jabri ) tested flush and 
extended endplate connections in 
composite and non-composite 
arrangements, including some Cardington 
connections.



Garston cruciform tests: test arrangement

Column head restrained 
in position
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horizontally
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Garston cruciform tests: “portable” furnace



Garston cruciform tests: End-plate Type 2
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High-temperature M-φ-θ characteristics of 
endplate joints
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Cardington beam-column joint after fire test

Buckling due to 
high axial force on 
heating



Component zones in end-plate joint
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Component zones in end-plate joint with 
axial thrust

Reduced tension

Higher
compression in 
web

Beam flange in higher
compression

Beam web mainly in
compression

Reduced force on column flange

Lower tension

Tension Compression Shear

Column web in 
shear

M

F

Beam web in shear



Component Behaviour at High Temperatures



Spyrou Component testing 1998-2001: 
Objectives

Compression Zone

• Examine experimentally the effect of elevated 
temperatures on column web buckling.

• Develop simplified/semi-empirical model of column web 
compression component behaviour for end-plate joints.

• Check both against finite element modelling.

Generally

• Check flush endplate moment-rotation predictions 
against previous cruciform furnace tests.

Tension Zone

• Do experiments on T-stubs at high temperatures.

• Develop simplified/semi-empirical model of tension 
component behaviour for end-plate joints.

• Check both against finite element modelling.



  

Spyrou furnace and control apparatus

Control panel

View ports
for cameras

Loading actuator



Failure modes for tension T-stubs

Failure Mode 2 Failure Mode 3Failure Mode 1



Spyrou compression zone test arrangement
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Roberts’ model for 
ultimate strength of stocky 
webs

Uniform 
stress σyw
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Simplified model of compression zone
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Qian shear panel tests



Restrained high-temperature joint testing



Qian & Tan restrained tests



Qian & Tan restrained specimen

UB305X102X25kg/m

1452
1652

70
0

15
00

1652
1452100 100

80
0

ENDPL

UC254X254X107kg/m

ENDPL

100 100

D29D29

D29

D29

D29

D29

D29 D29



Qian & Tan restrained tests



Qian & Tan restrained tests



Qian & Tan restrained tests



1. Modified Rotational Models

Component Modelling in Fire



Simoes da Silva (2001) component approach 

• Find ambient-temperature force-displacement response at ambient 
temperature according to EC3-1-8 component method principles.

• Apply high-temperature material reduction factors for stiffness and 
strength to produce high-temperature equivalents.



Simoes da Silva  modelling of Sheffield tests



Modified rotational models: Qian & Tan
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Component Modelling in Fire

2. General Connection Elements



The “Component”  method with axial force

• In fire axial compression acts together with moment 
due to restraint to thermal expansion.  Component 
model would deal with this automatically, though M-φ
curves change due to thrust.
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The “Component”  method with axial force
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• In fire axial compression acts together with moment 
due to restraint to thermal expansion.  Component 
model would deal with this automatically, though M-φ
curves change due to thrust.



The “Component”  method with axial force

• In fire axial compression acts together with moment 
due to restraint to thermal expansion.  Component 
model would deal with this automatically, though M-φ
curves change due to thrust.
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Component-Based Connection Element 
(Block)
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Comparison of joint element with tests by 
Leston-Jones 
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Component-based connection element: 
beam shear panel 
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Implementation of joint element in software
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The end …



… nearly …



Next emphasis

Floor beam Shear 
tab plate

Column tree

Robustness in tying (tension) of typical 
connection details in fire.

Example: WTC5 system



Failure of tab plates in WTC 5 column trees



Combined catenary tension and shear



Current work on robustness



… Thank you


