THE GROWING STEEL HOUSE

family rules

Sustainable approach

The Czech Technical University in Prague Faculty of Civil Engineering Department of Steel and Timber Structures

Layout

- Introduction
 - Assessment of sustainable development
- Methodologies in the Czech Republic
- SBToolCZ
- Growing steel house assessement
 - Description of the Growing Steel house
 - Assessment on sustainable development
- Summary

Assessment of Sustainable development

- LCA life cycle assessment
- Multi-criterion analysis
- Several points of view

• LEED

- BREEAM
- SBTool

Methodologies – Czech Republic

• LEED

US methodology

• BREEAM

- British methodology
- originally based on EcoHomes
- based on fixed credits for criterions
- summary gives the rating
- simplicity
- hard to adapt to different regions

Methodologies – Czech Republic

• SBTool (iiSBE)

- international assessment framework
- rating system can be adapted to local conditions
- SBToolCZ
- SBToolCZ
 - developed by the CTU
 - specific regional conditions of Czech Republic
 - assessment method for design phase

SBToolCZ

- can work also as a guideline
- list of criterions
- environmental, socio-cultural, economics, locality
- 33 criterions

Group	Criterion					
Criterion for the area of environmental impact						
Climate change	Operational CO ₂ emissions Embodied CO ₂ emissions					
Air quality	Operational SO ₂ emissions Operational NO _x emissions					
Biodiversity	Use of greenery on the land Use of greenery on the facade and roof Ecological value of the place	\geq				
	Consumption of primary energy for operation of the building Embodied energy					
Use of resources	Use of structural material during construction Construction waste during construction and demolition Use of rainwater Reuse of land					
Environmental risks	Ration of rainwater kept on the land					

SBToolCZ

Criterion for the Socio - cultural area					
Overlite of indexed	Eyesight comfort				
Quality of indoors environment	Acoustic comfort Thermal comfort				
onnon	Air quality in the building				
	Access to public places for relaxation				
	Availability of services				
Availability	Availability of public transport				
	Promotion of cycling				
	Access for disabled people				
Safety	Safety in the building and its surroundings				
Salety	Security of the building				
Functionality	Adaptability				

Criterion for the area of economy					
LCC	Analysis of operating costs				
Support of the local economy	Use locally produced products				
Externalities	Innovative approach Provision of operational and detailed documentation				
Risks	Minimisation of regional climatological risks Autonomy of operation				

SBToolCZ

properties vealuation of criterion y given benchmarks (points) weight for each criterion final given benchmark

Summary of points from all criterions Final scale: 0 – 10 points

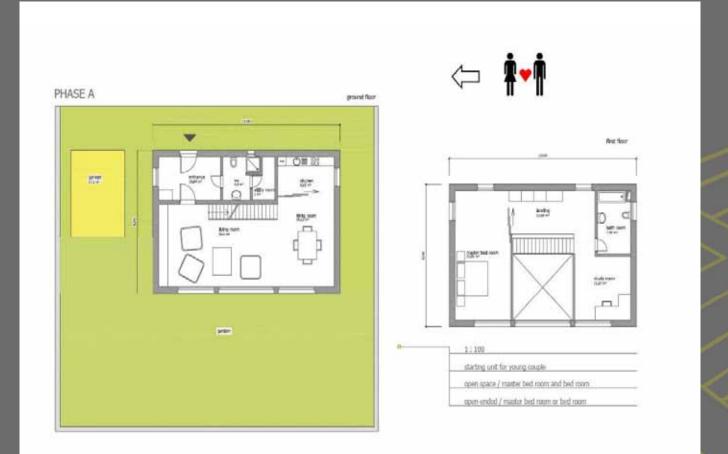
Layout

- Introduction
 - Assessment of sustainable development
- Methodologies in the Czech Republic
- SBToolCZ
- Growing steel house assessement
 - Description of the Growing Steel house
 - Assessment on sustainable development
- Summary

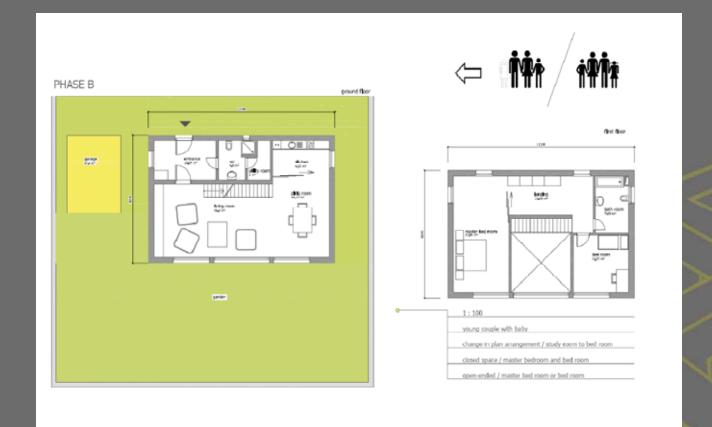
AR8

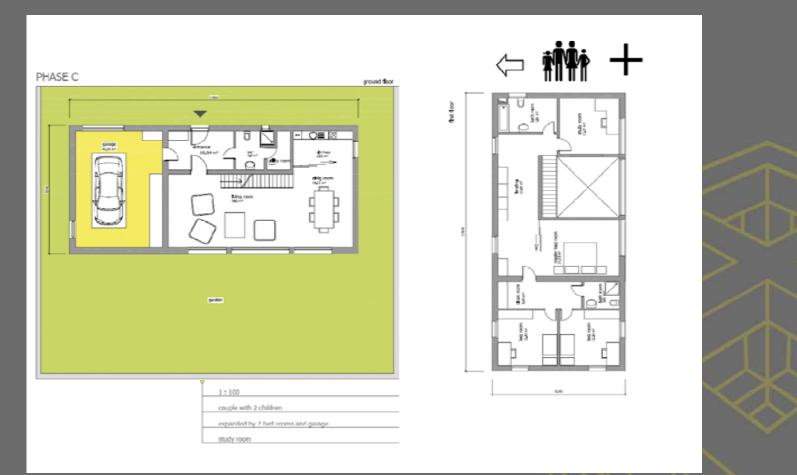
Description of the Growing Steel house

PROJECT IS BASED ON SEVERAL IMPORTANT POINTS


- to design a house for the widest possible sort of population
- to be adaptable both from outside and especially inside,
- dynamical reflex to the needs of family (Every family is changing, growing, reassessing their needs and necessity)

Description of the Growing Steel house"

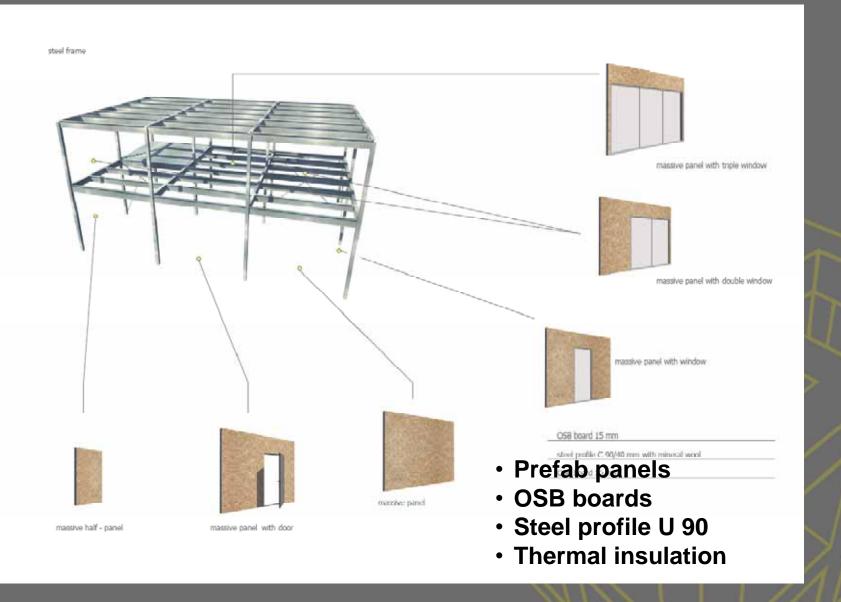

- accent on the importance on the linkage of the building with the landscape
- Windows located on the south facade (to aerate and illuminate the interior of the house, to allow the solar gains during winter period)
- The ground plan of our house (its usable area 130 m²) is based on the surveys of the Bureau of Statistics, trends and average needs for the square meters
- Low energy standard with low operational emissions


Starting unit for a young couple without children

Young couple with baby

Couple with two children + garage

Construction part


Elements

- Purlins IPE160
- Beams IPE270
- Columns tube
 120x120x5
- Bracing tube 38x4

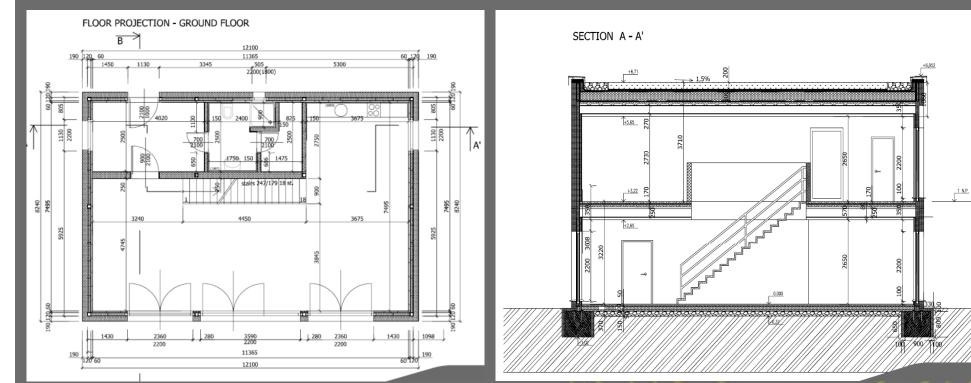
External walls

Wall composition

INTERIOR

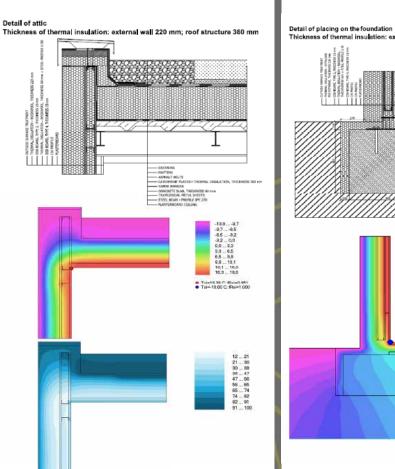
- Steel shape
- OSB boards
- Mineral insulation
- Air space
- Plaster board

EXTERIOR

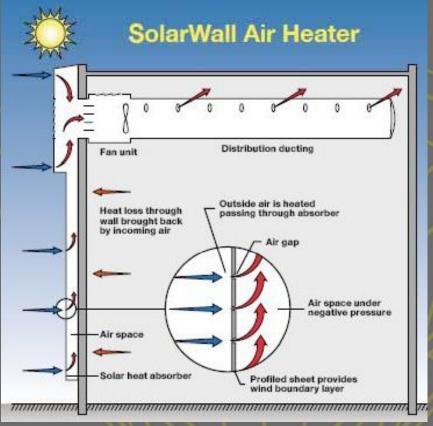

- OSB boards
- Mineral insulation
- Air space
- External plaster

Structural design

Plan view


Section

Building Physics

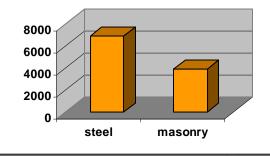

- Roof
- Attic
- Foundation
- Panels
- Window
- Wall corners

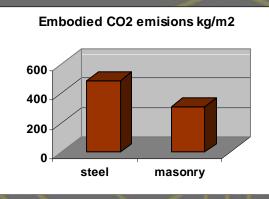
Building physics

- South orientation
- Less then 20 kWh/m² per year
 For winter heating

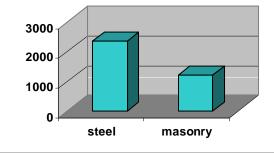
Layout

- Introduction
 - Assessment of sustainable development
- Methodologies in the Czech Republic
- SBToolCZ
- Growing steel house assessement
 - Description of the Growing Steel house
 - Assessment of sustainable development
- Summary

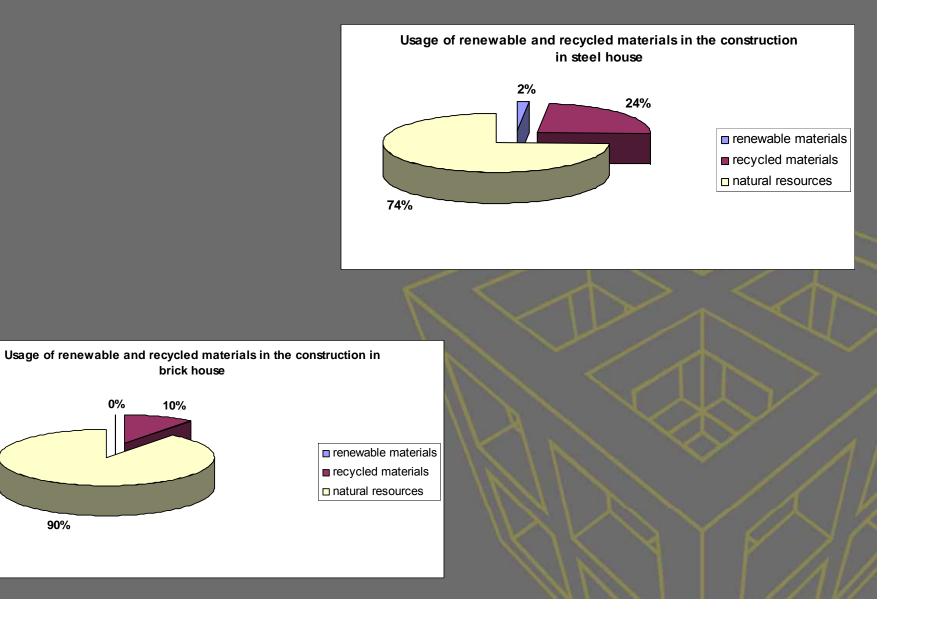

Assessment of sustainable development


Environment		project	steel		masonry	
			Marks	Summary	Marks	Summary
Climate change			Marks	of marks	Marks	of marks
	Operating emissions CO _{2.ekv.}	12,5%	3,73	0,466	3,74	0,467
	Embodied emissions CO2,ekv.	3,5%	-1,00	-0,035	-1,00	-0,035
Air Quality						
	Operating emissions SO _{2.ekv.}	4,6%	4.81	0,219	4,82	0,219
	Operating emissions NO _x	4.6%	4.31	0,196	4.31	0,196
Biodiversity		1,070	.,	0,170	.,	0,170
	Proportion of area with the original nature character	3,6%	3,08	0,111	3,08	0,111
Usage of resources and waste						
	Annualized non- renewable primary energy used for facility operations	7,7%	3,79	0,291	3,79	0,291
	Annualized non- renewable primary energy embodied in construction materials	3.8%	-1.00	-0.038	-1.00	-0.038
	Usage of renewable and recycled materials in	5,070	-1,00	-0,030	-1,00	-0,030
	the construction	6,2%	4,00	0,248	3,00	0,186
	Construction waste- during the construction					
	and demolition	3,6%	-1,00	-0,036	-1,00	-0,036
		50,0%		1,421		1,361
Social aspects						
Health and quali	ty of indoor environment					
	Day lighting	5,2%	5,00	0,260	5,00	0,260
	Acoustic comfort	6,5%	3,00	0,195	3,00	0,195
	Thermal comfort	6,8%	5,00	0,340	5,00	0,340
	Indoor air quality	5,4%	3,00	0,162	3,00	0,162
Availability						
	Access for disabled people	3,3%	3,00	0,099	3,00	0,099
Security						
	Security of building	4,4%	1,00	0,044	1,00	0,044
Adaptability and						
	Adaptability	3,4%	5,00	0,170	-1,00	-0,034
		35,0%		1,270		1,066
Economy						
LCC		E 001	0.07	0.45-	0.07	0.45-
	Life cycle cost	5,3%	3,00	0,158	3,00	0,158
Support of local	economy Usage of local products	3.6%	0.00	0.000	0.00	0.000
Externalities	Usage of local products	3,0%	0,00	0,000	0,00	0,000
Externations	Innovative approach	2,5%	3,00	0,074	3,00	0,074
	Availability of detailed and operating documentation	1,8%	3,00	0,053	3,00	0,053
Rizika						
	Autonomy of operation	2,0%	0,00	0,000	0,00	0,000
		15,0%		0,284		0,284
				3,00		2,70
<u>Marks</u>						
-1	Inappropriate solutions					
0	Admissible solutions					

...Admissible sol


...Good solutions

Embodied Energy MJ/m2



Embodied SO2 emissions g/m2

Assessment on sustainable development

Summary

- Growing steel house 3,00 pts. very good solution
- Steel vs. brick house
 - Embodied emissions and energy
 - Usage of materials
 - Adaptability

THANK YOU FOR YOUR ATTENTION

fire.fsv.cvut.cz/affordable_houses

Students / design: tereza pavlů - structural design; petr schorsch - structural design; lukáš turek - architectural concept and solution;

Students /collaboration on the text part : tomáš horálek - socio-economical evaluation; jakub holeček - socio-economical evaluation; pavel jenýš - traditional housing concept; rostislav mazáč - socio-economical evaluation; zdeňka staňková - traditional housing concept; oldřich švec - socio-economical evaluation; kristina trnková - traditional housing concept; zuzana šulcová - web Page

Teachers / concultations: františek wald - head; karel mikeš – manager; petr hájek - sustainability building concept; jan tywoniak - building energy concept