Training School for Young Researchers

Fire Engineering Research – Key Issues for the Future

Design methods – codified, prescriptive or performance-based

Paulo Vila Real

Scope

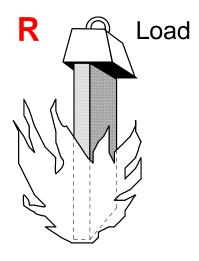
- ☐ Introduction
- ☐ Thermal Actions
- ☐ Mechanical Actions
- □ Thermal Analysis
- Mechanical Analysis
- □ Design procedures
- □ Examples using different design procedures: prescriptive and performance-based

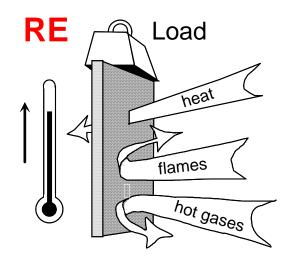
Introduction **Question**

□ Prescriptive or performance-based approach?

Introduction Two type of regulations or standards

- ☐ Each country has its own regulations for fire safety of buildings where the requirements for fire resistance are given
- ☐ Standards for checking the structural fire resistance of the buildings in Europe the structural EUROCODES






Introduction Fire Resistance

☐ Classification criteria

R – Load bearing criterion; E – Integrity criterion; I – Insulation criterion

- Load bearing only: mechanical resistance (criterion R)
- Load bearing and separating: criteria R, E and when requested, I

R

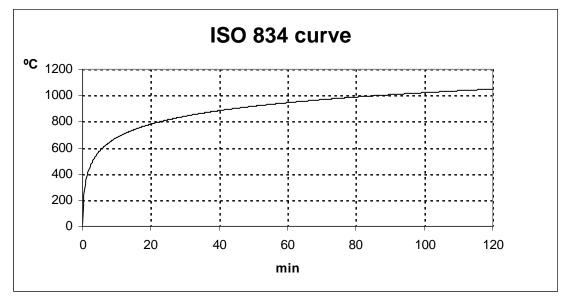
Ε

Introduction -Fire Resistance Criteria R, E and I - UK Approved document B

Fire resistance

B3.ii The fire resistance of an element of construction is a measure of its ability to withstand the effects of fire in one or more ways, as follows:

- a. resistance to collapse, i.e. the ability to maintain loadbearing capacity (which applies to loadbearing elements only);
- resistance to fire penetration, i.e. an ability to maintain the integrity of the element;
- resistance to the transfer of excessive heat,
 i.e. an ability to provide insulation from high temperatures.

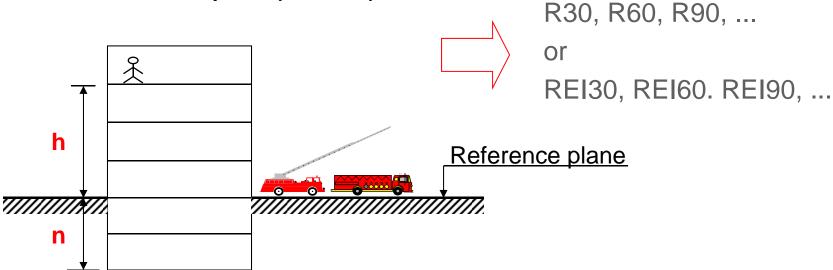


Introduction Fire Resistance – Criteria R, E and I

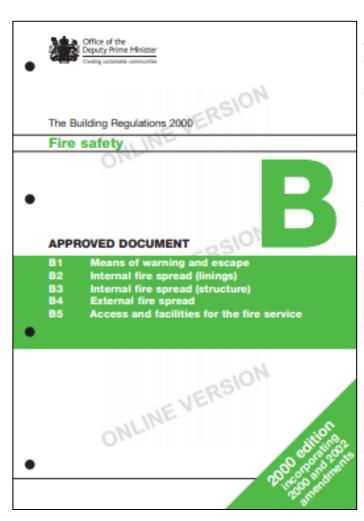
☐ Standard fire curve

Fire resistance is the time since the begining of the standard fire curve ISO 834 until the moment that the element doesn't fulfill the functions for that it has been designed (Load bearing and/or separating functions)

$$T = 345 \log_{10} (8t + 1) + 20$$



Introduction Regulations for fire safety of buildings


- **☐** Normally the risk factors are:
 - Height of the last occupied storey in the building (h) over the reference plane
 - Number of storeys below the reference plane (n)
 - Total gross floor area
 - Number of occupants (effective)

Introduction. Example Regulations for fire safety – UK Approved document B

PERFORMANCE OF MATERIALS AND STRUCTURES

Table A2 Minimum periods of fire resistance								
Purpose group of building	Minimum per	Minimum periods (minutes) for elements of structure in a:						
	Basement sto	rey (\$) including floor over	Ground or upper storey					
	Depth (m) of a lowest b			Height (m) of top floor above ground, in a building or separated part of a building				
	More than 10	Not more than 10	Not more than 5	Not more than 18	Not more than 30			
Residential (domestic):		- 500	RU					
a. Flats and maisonettes	90	60	30*	60**†	90**			
b. and c. Dwellinghouses	Not relevant	30*	30°	60@	Not relevant			
2. Residential:	11011							
a. Institutional œ	90	60	30*	60	90			
b. Other residential	90	60	30*	60	90			
3. Office:								
 Not sprinklered 	90	60	30*	60	90			
- Sprinklered (2)	60	60	30*	30*	60			
4. Shop and commercial:								
 Not sprinklered 	90	60	60	60	90			
- Sprinklered (2)	60	60	30*	60	60			
5. Assembly and recreation:								
 Not sprinklered 	90	60	60	60	90			

Introduction. Example Regulations for fire safety – UK Approved document B

INTERNAL FIRE SPREAD (STRUCTURE)

B3

The Requirement

This Approved Document deals with the following Requirement from Part B of Schedule 1 to the Building Regulations 2000.

Requirement

Limits on application

Internal fire spread (structure)

- **B3.**(1) The building shall be designed and constructed so that, in the event of fire, its stability will be maintained for a reasonable period.
- (2) A wall common to two or more buildings shall be designed and constructed so that it adequately resists the spread of fire between those buildings. For the purposes of this sub-paragraph a house in a terrace and a semi-detached house are each to be treated as a separate building.
- (3) To inhibit the spread of fire within the building, it shall be sub-divided with fire-resisting construction to an extent appropriate to the size and intended use of the building.
- (4) The building shall be designed and constructed so that the unseen spread of fire and smoke within concealed spaces in its structure and fabric is inhibited.

Requirement B3(3) does not apply to material alterations to any prison provided under Section 33 of the Prisons Act 1952.

Introduction. Example Portuguese regulation for fire safety of buildings

□ Required fire resistance

- The load-bearing or/and separating function should be maintained during the complete duration of the fire including the decay phase (this means that natural fires can be used), or alternatively during the required time of standard fire exposure given in the table below:

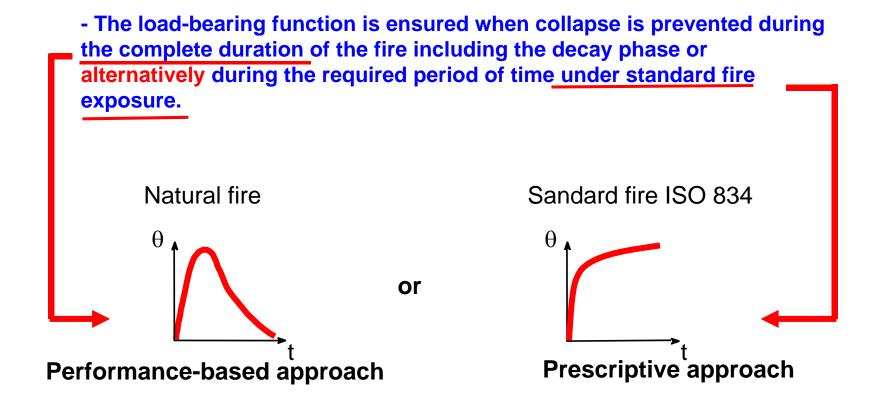
Standard fire resistance of structural members in buildings

Classification according to the occupancy	Risk categories				Function of the structural member
Classification according to the occupancy	1.°	2.	3.°	4.°	r diletion of the structural member
I, III, IV, V, VI ,VII ,VIII ,IX ,X	R30 REI30	R60 REI60	R90 REI90	R120 REI120	Only load bearing Load bearing and separating
II, XI and XII	R60 REI60	R90 REI90	R120 REI120	R180 REI180	Only load bearing Load bearing and separating

Type I «Dwelling»: Type II «Car parks»; Type III «Administrative»; Type IV «Schools»; Type V «Hospitals»;

Type VI «Theatres/cinemas and public meetings»; Type VII «Hotels and restaurants»;

Type VIII «Shopping and transport centres»; Type IX «Sports and leisure»;


Type X «Museums and art galleries»; Type XI «Libraries and archives»;

Type XII «Industrial, workshops and storage»

Introduction Prescriptive or performance-based

Introduction Codes for fire design in Europe: Structural Eurocodes

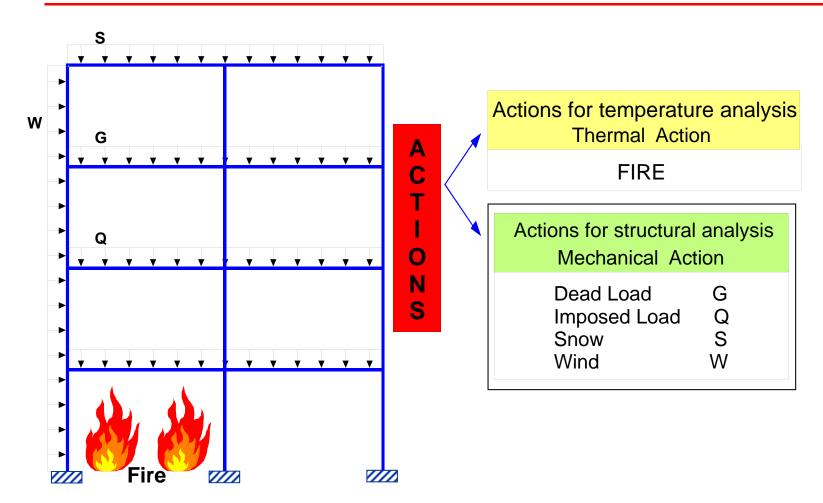
Eurocodes

EN 1990	Eurocode:	Basis of Structural Design
EN 1991	Eurocode 1:	Actions on structures
EN 1992	Eurocode 2:	Design of concrete structures
EN 1993	Eurocode 3:	Design of steel structures
EN 1994	Eurocode 4:	Design of composite steel and concrete structures
EN 1995	Eurocode 5:	Design of timber structures
EN 1996	Eurocode 6:	Design of masonry structures
EN 1997	Eurocode 7:	Geotechnical design
EN 1998	Eurocode 8:	Design of structures for earthquake resistance
EN 1999	Eurocode 9:	Design of aluminium structures

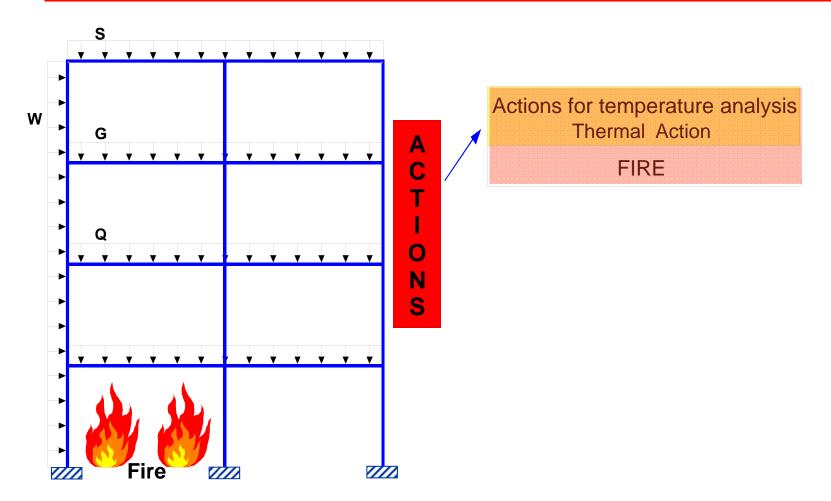
Fire design

Parts 1-2 Except EN 1990, EN 1997 and EN 1998, all the Eurocodes have

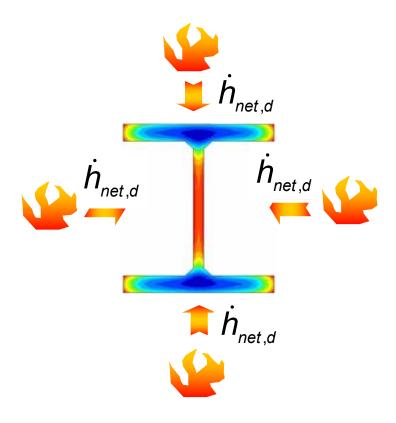
Part 1-2 for fire design


Fire Design of Structures Four steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- 3. Calculation of temperature evolution within the structural members All the Eurocodes
- 4. Calculation of the mechanical behaviour of the structure exposed to fire All the Eurocodes


Eurocode 1: Actions on Structures

Eurocode 1: Actions on Structures



Thermal actions Heat transfer at surface of building elements

$$\dot{h}_{net,d} = \dot{h}_{net,c} + \dot{h}_{net,r}$$

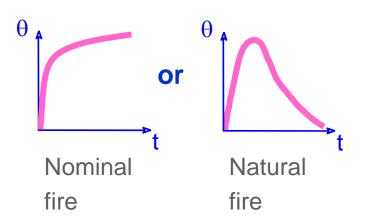
Total net heat flux

Thermal actions Heat transfer at surface of building elements

$$\dot{h}_{net,d} = \dot{h}_{net,c} + \dot{h}_{net,r}$$

Total net heat flux

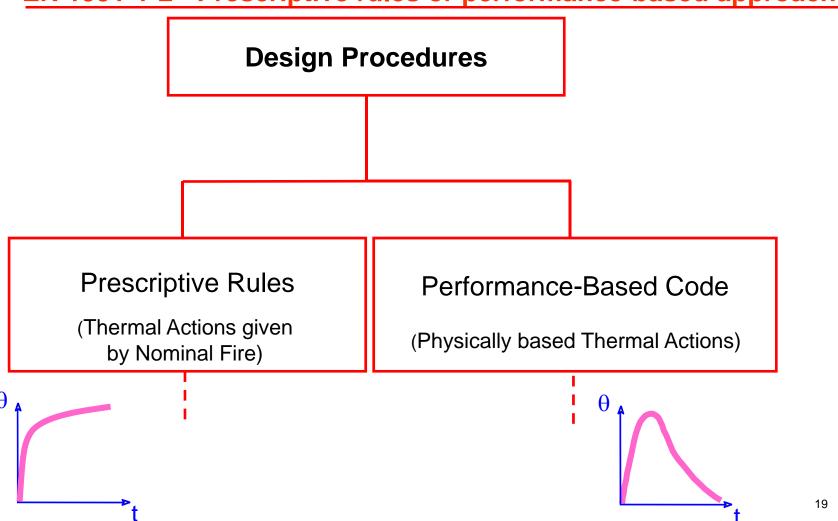
$$\dot{h}_{net,c} = \alpha_c(\theta_g - \theta_m)$$


Convective heat flux

$$\dot{h}_{net,r} = \Phi \cdot \varepsilon_f \cdot \varepsilon_m \cdot \sigma \cdot [(\theta_r + 273)^4 - (\theta_m + 273)^4]$$
 Radiative heat flux

18

$$\theta_g \approx \theta_r$$


Temperature of the fire compartment

Actions on Structures Exposed to Fire EN 1991-1-2 - Prescriptive rules or performance-based approach

Actions on Structures Exposed to Fire EN 1991-1-2 - Prescriptive rules or performance-based approach

Nominal temperature-time curves

Standard temperature-time curve

External fire curve

Hydrocarbon curve

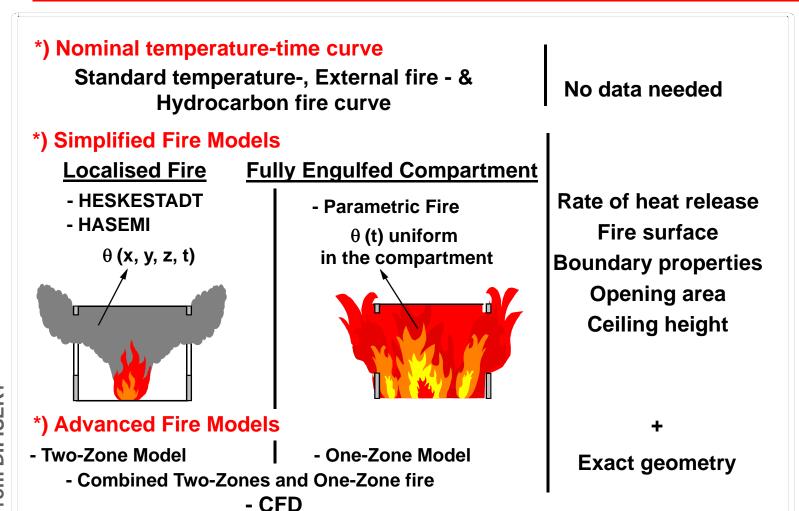
Natural fire models

Simplified fire models

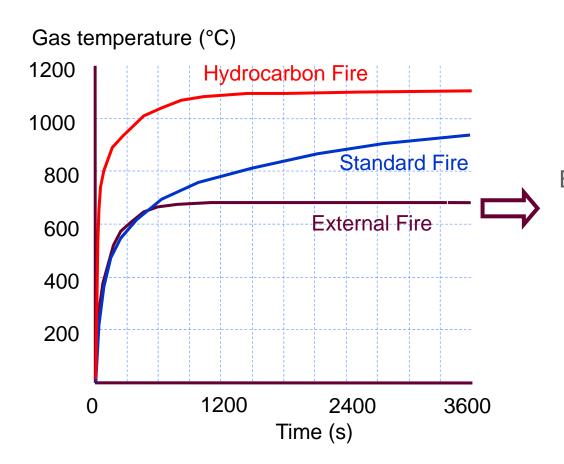
Compartment fires - Parametric fire

Localised fires – Heskestad or Hasemi

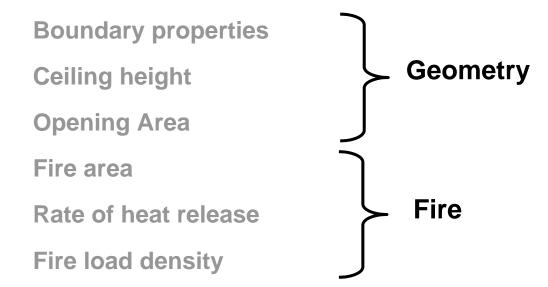
Advanced fire models


Two-Zones or One-Zone fire or a combination

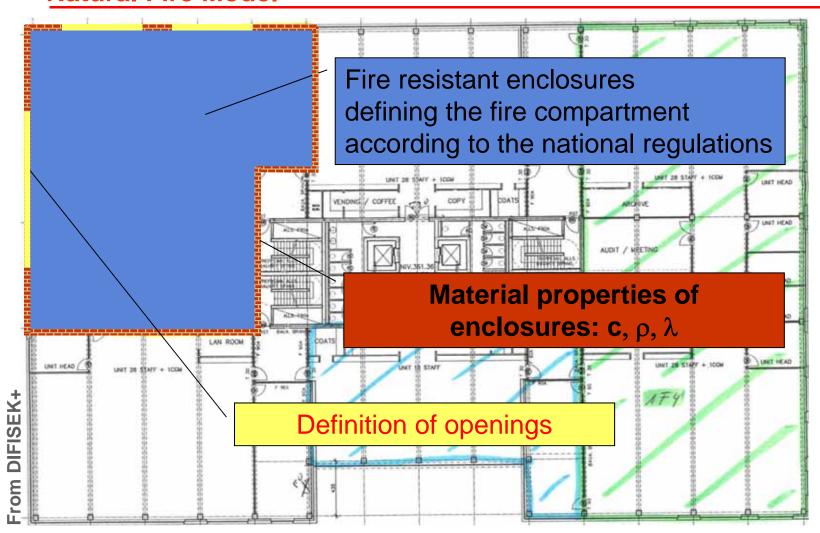
CFD – Computational Fluid Dynamics


Actions on Structures Exposed to Fire EN 1991-1-2 - Prescriptive rules or performance-based approach

Simplified fire models Nominal Temperature-Time Curve



EC3 and EC9 do not use
this external fire curve.
A special Annex B on
both Eurocodes gives
a method for
evaluating the heat
transfer to external
steelwork


List of Physical Parameters needed for Natural Fire Models

Characteristics of the Fire Compartment Natural Fire Model

Characteristics of the Fire Load from EN 1991-1-2 Natural Fire Model

Occupancy	Fire Growth Rate	RHR _f [kW/m²]	Fire Load q _{f,k} 80% fractile [MJ/m²]
Dwelling	Medium	250	948
Hospital (room)	Medium	250	280
Hotel (room)	Medium	250	377
Library	Fast	500	1824
Office	Medium	250	511
School	Medium	250	347
Shopping Centre	Fast	250	730
Theatre (movie/cinema)	Fast	500	365
Transport (public space)	Slow	250	122

Design value of the fire load density Natural Fire Model

$$q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_{n}$$

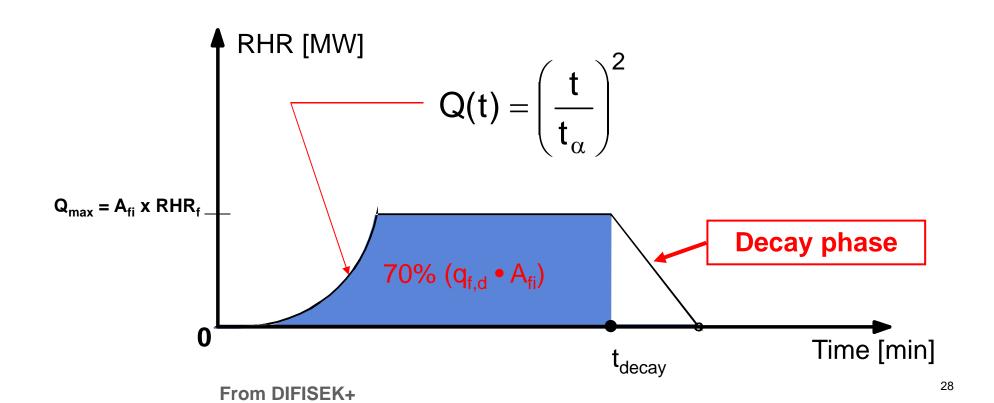
[MJ/m²]

- m Combustion factor. Its value is between 0 and 1. For mainly cellulosic materials a value of 0.8 may be taken. Conservatively a value of 1 can be used
- δ_{q1} factor taking into account the fire activation risk due to the size of the compartment
- δ_{q2} factor taking into account the fire activation risk due to the type of occupancy
- δ_n factor taking into account the different fire fighting measures

$$\delta_{n} = \prod_{i=1}^{10} \delta_{ni} = \delta_{n1} \cdot \delta_{n2} \cdots \delta_{n9} \cdot \delta_{n10}$$

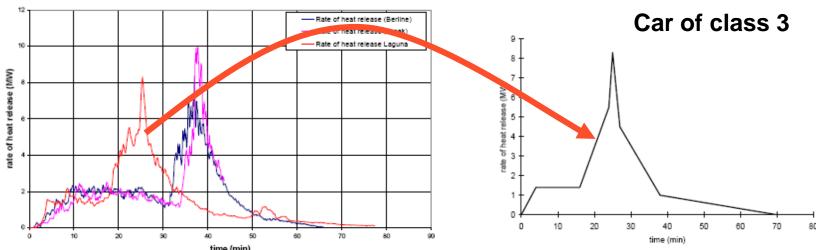
Characteristics of the Fire Load from EN 1991-1-2 Natural Fire Model

Compartment floor area A _f [m²]	Danger of Fire Activation δ _{q1}	Danger of Fire Activation δ _{q2}	Examples of Occupancies
25	1,10	0,78	Art gallery, museum, swimming pool
250	1,50	1,00	Residence, hotel, office
2500	1,90	1,22	Manufactory for machinery & engines
5000	2,00	1,44	Chemical laboratory, Painting workshop
	-		Manufactory of fireworks

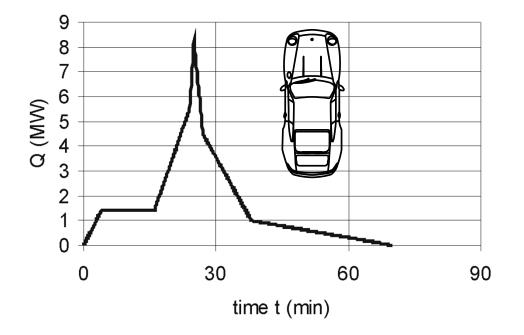

 $q_{\text{f,d}} = \delta_{\text{q1}}$. δ_{q2} . $\prod \delta_{\text{ni}}$. m . $q_{\text{f,k}}$

Automatic Fire S	Suppression	Auto	matic Fir	e Detection	Manual Fire Suppression				
Automatic Water Extinguishing System	Independent Water Supplies 0 1 2	Dete	atic fire ection larm by Smoke	Automatic Alarm Transmission to Fire Brigade	Work Fire Brigade	Off Site Fire Brigade	Safe Access Routes	Fire Fighting Devices	Smoke Exhaust System
^δ n1	δ _{n2}	^δ n3	δ _{n4}	δ _{n5}	δ _{n6}	δ _{n7}	δ _{n8}	δ _{n9}	δ n10
0,61	1,0 0,87 0,7	0,87 o	r 0,73	0,87	0,61 or	0,78	0,9 or 1 1,5	1,0	1,0

Rate of Heat Release Curve from EN 1991-1-2 Natural Fire Model



Rate of Heat Release of a class 3 car. Experimental evaluation Natural Fire Model



Demonstration of real fire tests in car parks and high buildings - Contract no. 7215 PP 025, Projecto Europeu

An idealized Rate of Heat Release Curve for a car burning Natural Fire Model

Rate of heat
release (MW)
0
1.4
1.4
5.5
8.3
4.5
1
0
_

From ECSC Project: Demonstration of real fire tests in car parks and high buildings.

Localised Fire: HESKESTAD Method Natural Fire Model

Annex C of EN 1991-1-2:

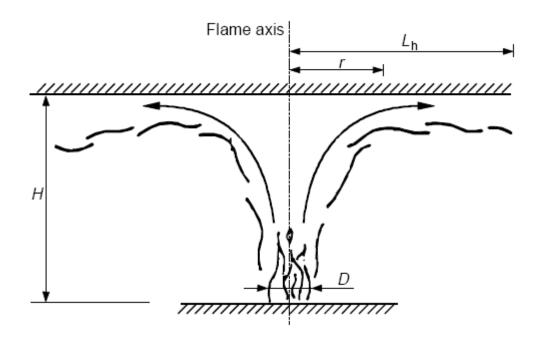
- Flame is not impacting the ceiling of a compartment (L_f < H)
- Fires in open air

$$\Theta_{(z)} = 20 + 0.25 (0.8 Q_c)^{2/3} (z-z_0)^{-5/3} \le 900^{\circ}C$$

H L_f z

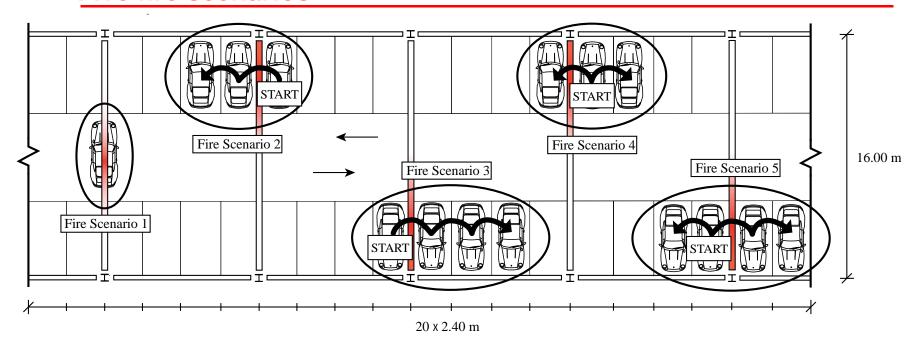
The flame length L_f of a localised fire is given by :

$$L_f = -1.02 D + 0.0148 Q^{2/5}$$



Localised Fire:HASEMI Method Natural Fire Model

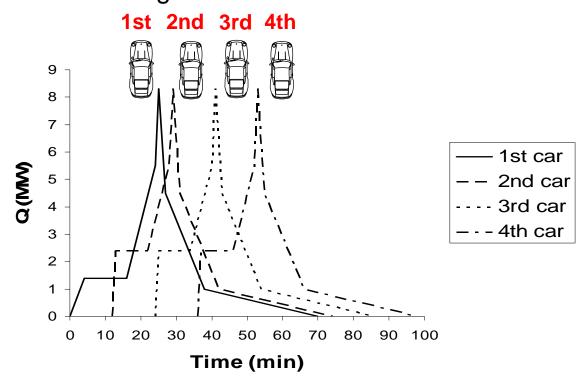
Annex C of EN 1991-1-2:


• Flame is impacting the ceiling (L_f > H)

Localised fires in a car park Five fire scenarios

Height: H = 2.7 m

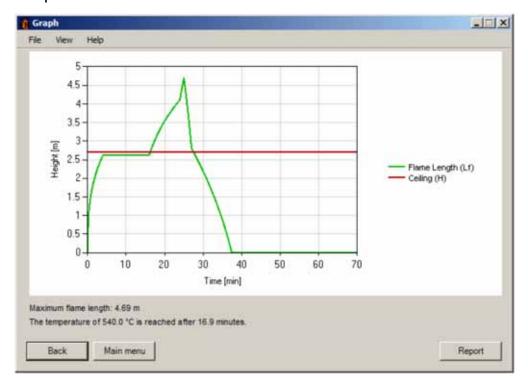
Diameter of flame: D = 3.9 m

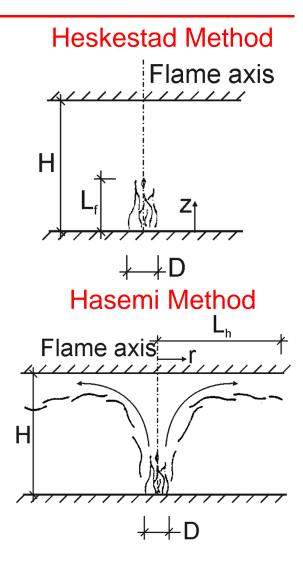

Steel Beams: IPE 500

Localised fire Rate of heat release of four burning cars

Curve of the rate of heat release of each car. A delay of 12 minutes between each burning car.

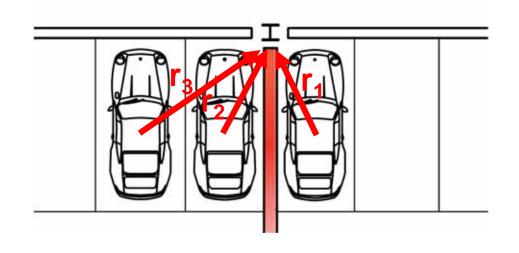
From ECSC Project: Demonstration of real fire tests in car parks and high buildings.

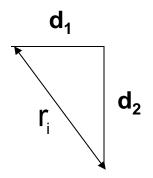


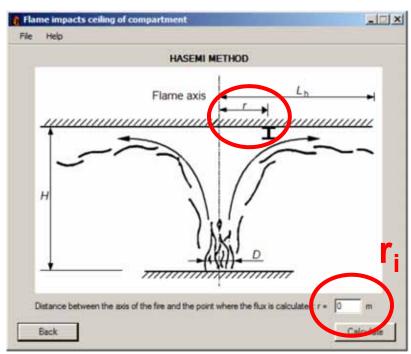

Two Localised fire models Flame length

if $L_r \ge H$ \Rightarrow Hasemi method has to be used

if $L_r < H \implies$ Heskestad method has to be used


Program Elefir-EN

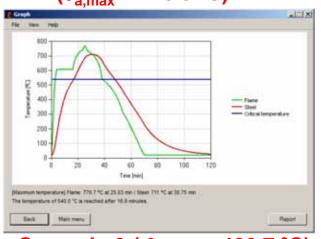


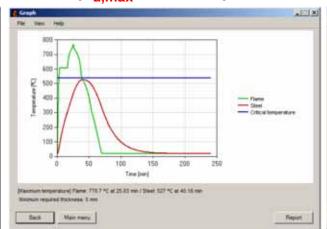


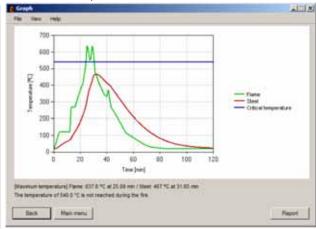
Hasemi method Horizontal distances

Program Elefir-EN

$$r_{i} = \sqrt{d_{1}^{2} + d_{2}^{2}}$$

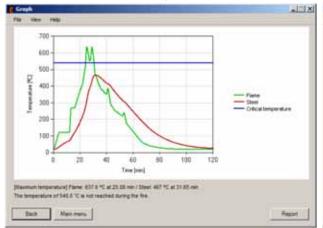

Temperature development Gas and steel temperture

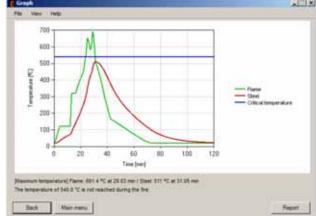

Scenario 1: unprotected steel (θ₂ = 710.9 °C)

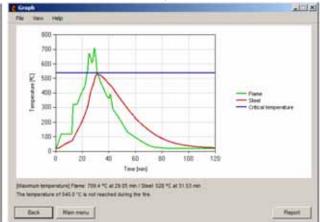

 $(\theta_{a,max} = 710.9 \, {}^{\circ}\text{C})$

Scenario 1: protected steel (θ_{a,max} = 527 °C)

Scenario 2 $(\theta_{a,max} = 466.7 \, {}^{\circ}\text{C})$






Scenario 3 ($\theta_{a,max} = 466.7 \, {}^{\circ}\text{C}$)

Scenario 4 ($\theta_{a,max}$ = 510.9 °C)

Scenario 3 ($\theta_{a,max}$ = 528.5 °C)

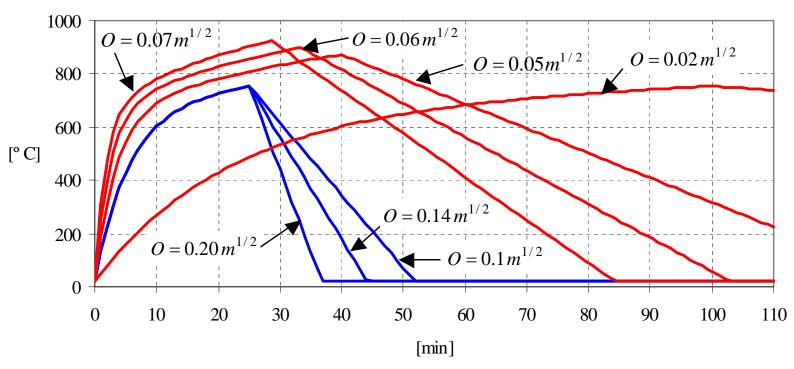
Parametric fire. Needed parameters **Natural Fire Model**

$$b = \sqrt{\rho c \lambda}$$

Fire load density - $Q_{f,d}$ Opening factor - $O = A_v \sqrt{h} / A_t$ Wall factor - $b = \sqrt{\rho c \lambda}$ Temperature $\theta = \theta(t)$

 A_{ν} - area of vertical openings; A_{t} - total area of enclosure

Limitations:


- $A_{floor} \leq 500 \text{ m}^2$
- No horizontal openings
- H ≤ 4 m
- Wall factor from 1000to 2200
- Fire load density, q_{t,d} from 50 to 1000 MJ/m²

Parametric Fire Natural Fire Model

Annex A of EN 1991-1-2

Ventilation controlled fires

— Fuel controlled fires

Parametric fire curves function of - O For a given q_{f,d}, b, A_t and A_f

Parametric Fire - Influence of the Actives Fire Safety Measures Natural Fire Model

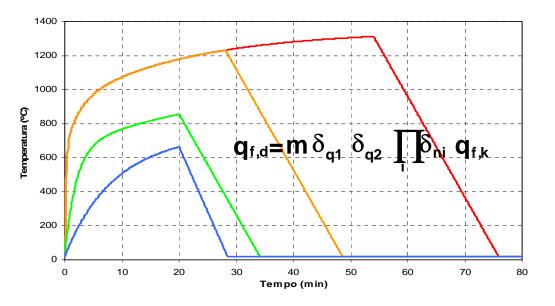
No Fire Active Measures		
Off Site Fire Brigade		
Safe access routes		
Automatic Fire Detection & Alarm by Smoke		
Fire fighting devices		
Automatic water extinguishing system - Sprinklers		
Automatic akarm transmission to fire brigade		

1567 = 511x0,8x1,14x1x 1x1x1x1x1x1x1x1,5x1,5x1,5

815 = 511x0,8x1,14x1x 1x1x1x1x1x1x0,78x1x1,5x1,5

397 = 511x0,8x1,14x1x 1x1x1x0,73x1x1x0,78x1x1x1,5

210 = 511x0,8x1,14x1x 0,61x1x1x0,73x0,87x1x0,78x1x1,5x1,5

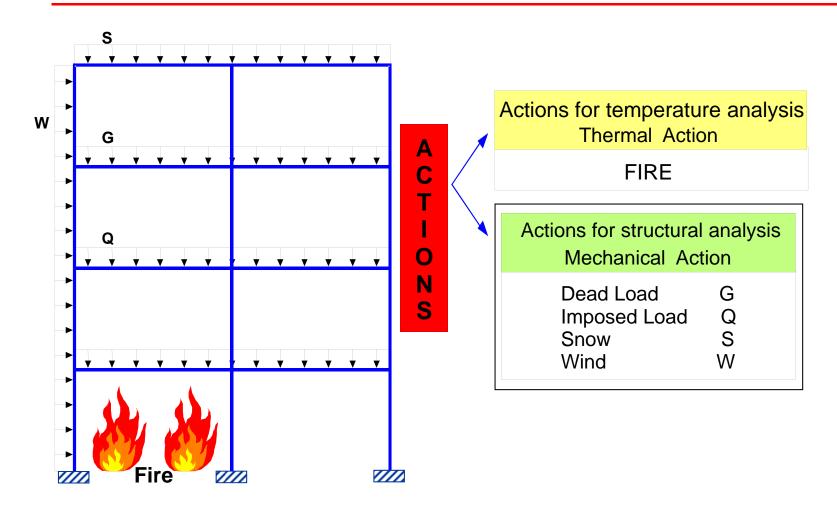

Office

$$A_f = 45,0 \text{ m}^2$$

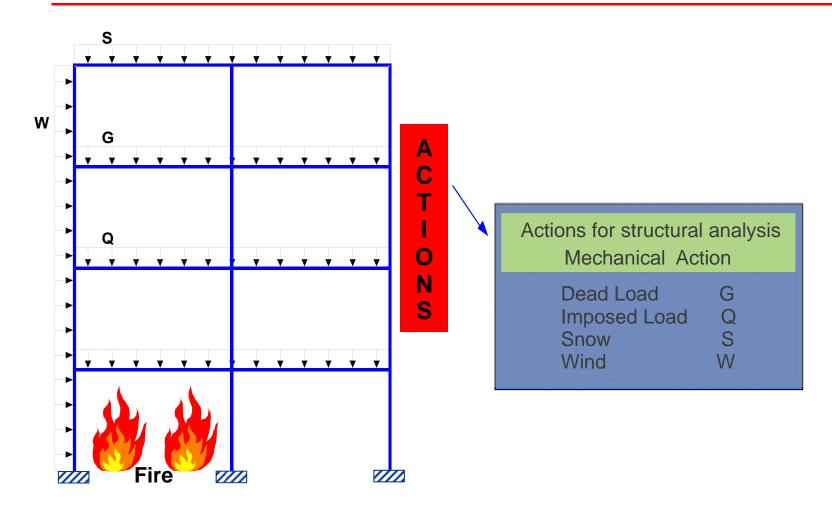
$$O = 0.08 \text{ m}^{1/2}$$

$$q_{f,k} = 511 \text{ MJ/m}^2$$

$$m = 0.8$$


Fire Design of Steel Structures Four steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- 3. Calculation of temperature evolution within the structural members EC3
- 4. Calculation of the mechanical behaviour of the structure exposed to fire EC3


Actions on Structures

Actions on Structures

Combination Rules for Mechanical Actions EN 1990: Basis of Structural Design

At room temperature (20 °C)

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,1} \psi_{0,i} \cdot Q_{k,i}$$

- In fire situation
 - Fire is an accidental action.
 - 2. The simultaneous occurrence of other independent accidental actions need not be considered

$$\sum_{j\geq 1} G_{k,1} + (\psi_{1,1}) \operatorname{ou} \psi_{2,1} \cdot Q_{k,1} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} + A_d$$

 $\psi_{1,1} \, Q_{k,1} - \text{Frequent value of the representative value of the variable action } \, Q_1 \\ \psi_{2,1} \, Q_{k,1} - \text{Quasi-permanent value of the representative value of the variable action } \, Q_1 \\ A_d - \text{Indirect thermal action due to fire induced by the restrained thermal expansion may be neglected for member analysis}$

Combination Rules for Mechanical Actions EN 1990: Basis of Structural Design

$$\sum_{j\geq 1} G_{k,1} + (\psi_{1,1} \text{ ou } \psi_{2,1}) \cdot Q_{k,1} + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} + A_d$$

Action	Ψ ₁	Ψ2
Imposed loads in buildings, category (see EN 1991-1-1)	0.5	0.3
Imposed loads in congregation areas and shopping areas	0.7	0.6
Imposed loads in storage areas	0.9	0.8
vehicle weight ≤ 30 kN	0.7	0.6
30 kN ≤ vehicle weight ≤ 160 kN	0.5	0.3
Imposed loads in roofs	0.0	0.0
Snow (Norway, Sweden)	0.2	0.0
Wind loads on buildings	0.2	0.0

In some countries the **National Annex** recommends Ψ_1, Q_1 , so that wind is always considered and so horizontal actions are always taken into account 45

Fire Design of Steel Structures Four steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- 3. Calculation of temperature evolution within the structural members EC3
- 4. Calculation of the mechanical behaviour of the structure exposed to fire EC3

Thermal response

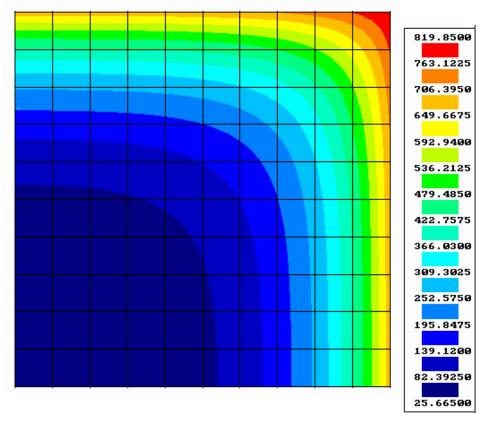
Heat conduction equation

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial \theta}{\partial y} \right) + \dot{Q} = \rho c_p \frac{\partial \theta}{\partial t}$$

Boundary conditions

$$q_c = h_c(\theta - \theta_{\infty})$$
 convection

$$q_{\rm r} = \beta \epsilon (\theta^4 - \theta_a^4) = \underbrace{\beta \epsilon (\theta^2 + \theta_a^2)(\theta + \theta_a)}_{h_r} (\theta - \theta_a) = h_r (\theta - \theta_a) \quad \text{radiation}$$



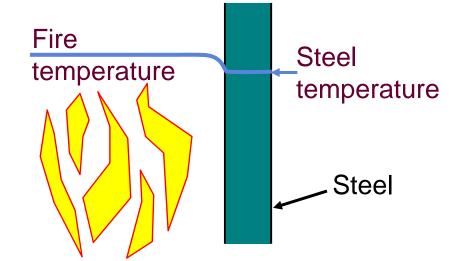
Thermal response

Temperature field by Finite Element Method – After 30 min. ISO

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial \theta}{\partial y} \right) + \dot{Q} = \rho c_p \frac{\partial \theta}{\partial t}$$

Concrete (30x30 cm2)

Note: this equation can be simplified for the case of current steel profiles



Temperature increase of unprotected steel Simplified equation of EC3

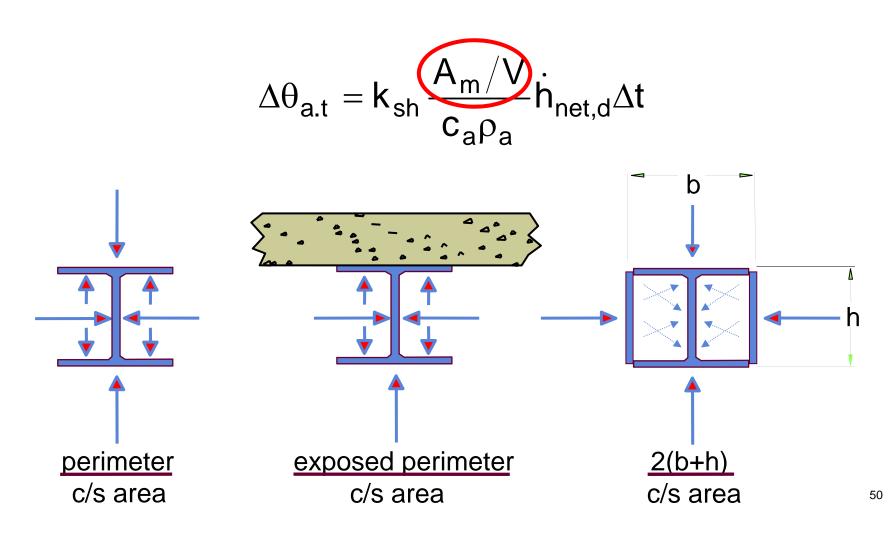
Temperature increase in time step Δt :

$$\Delta \theta_{a.t} = k_{sh} \frac{A_m/V}{c_a \rho_a} \dot{h}_{net,d} \Delta t$$

Heat flux $\dot{h}_{net,d}$ has 2 parts:

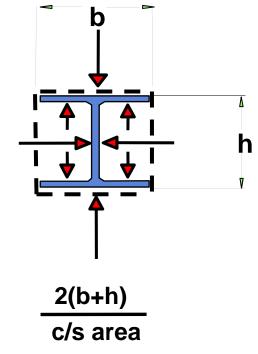
Radiation:

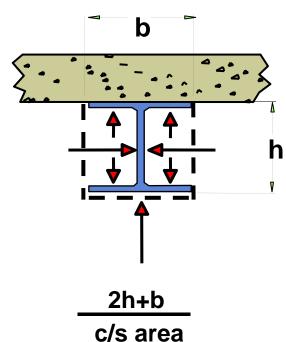
$$\dot{h}_{net,r} = 5.67x10^{-8} \, \Phi \epsilon_f \epsilon_m \Big(\!\! \left(\theta_r + 273\right)^{\!4} - \! \left(\theta_m + 273\right)^{\!4} \Big)$$


Convection:

$$\dot{h}_{\text{net,c}} = \alpha_{\text{c}} (\theta_{\text{g}} - \theta_{\text{m}})$$

Section factor A_m/V Unprotected steel members

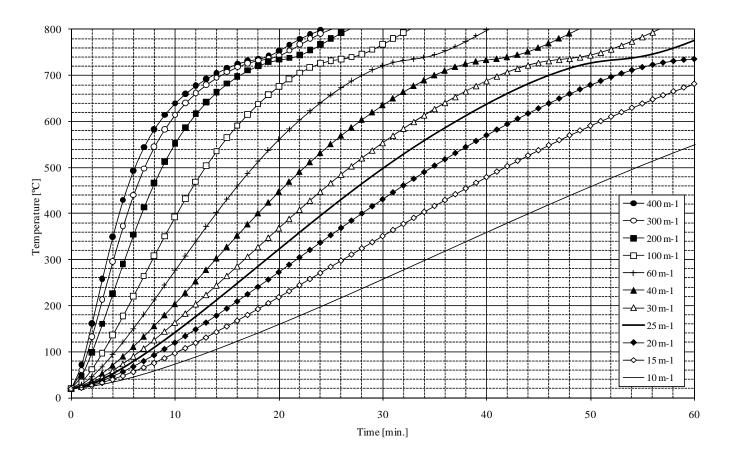

Correction factor for the Shadow effect k_{sh}


For I-sections under nominal fire: $k_{sh} = 0.9 [A_m/V]_b/[A_m/V]$

In all other cases: $k_{sh} = [A_m/V]_b/[A_m/V]$

For cross-sections convex shape: $k_{sh} = 1$

 $[A_m/V]_h$ - Section factor as the profile has a hollow encasement fire protection



Nomogram for temperature Unprotected steel profiles

Nomogram for unprotected steel members subjected to the ISO 834 fire curve, for different values of $k_{sh} \cdot Am/V$ [m-1]

Structural fire protection

Passive Protection

Insulating Board

Gypsum, Mineral fibre, Vermiculite.

Easy to apply, aesthetically acceptable.

Difficulties with complex details.

Cementitious Sprays

Mineral fibre or vermiculite in cement binder.

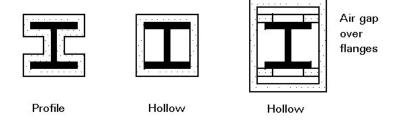
Cheap to apply, but messy; clean-up may be expensive.

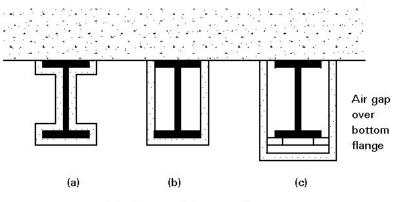
Poor aesthetics; normally used behind suspended ceilings.

Intumescent Paints

Decorative finish under normal conditions.

Expands on heating to produce insulating layer.

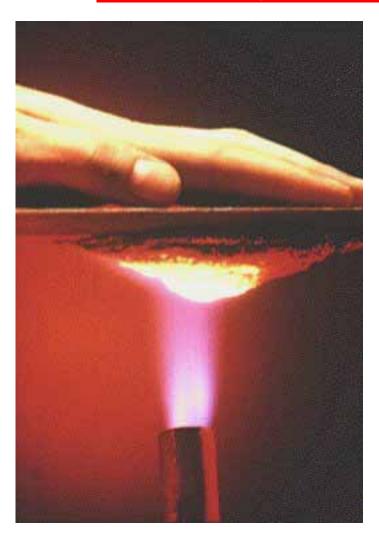

Can be done off-site.



Structural fire protection

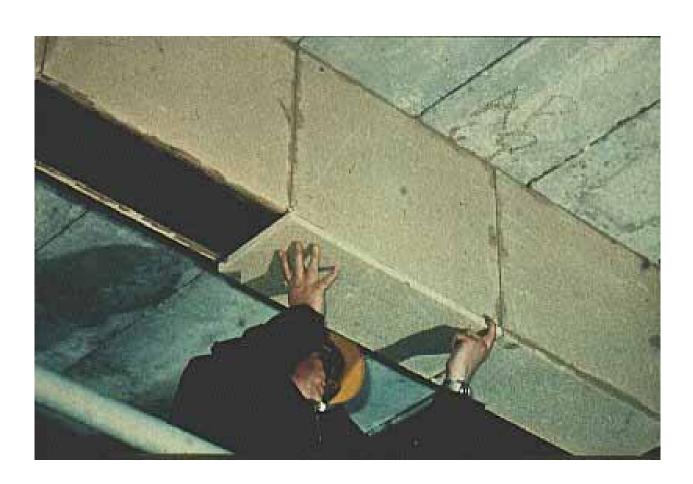
Columns:

Beams:

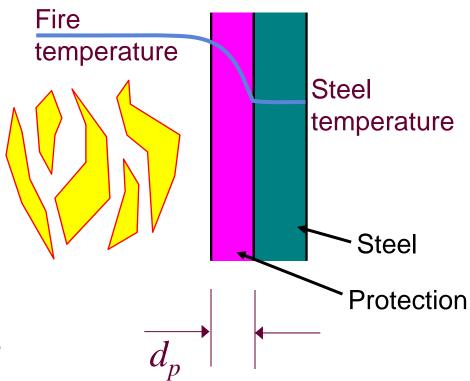


- (a) Spray or intumescent
- (b) Board
- (c) Board

Structural fire protection Intumescent paint


Structural fire protection Cementitious Sprays

Structural fire protection Insulating Board

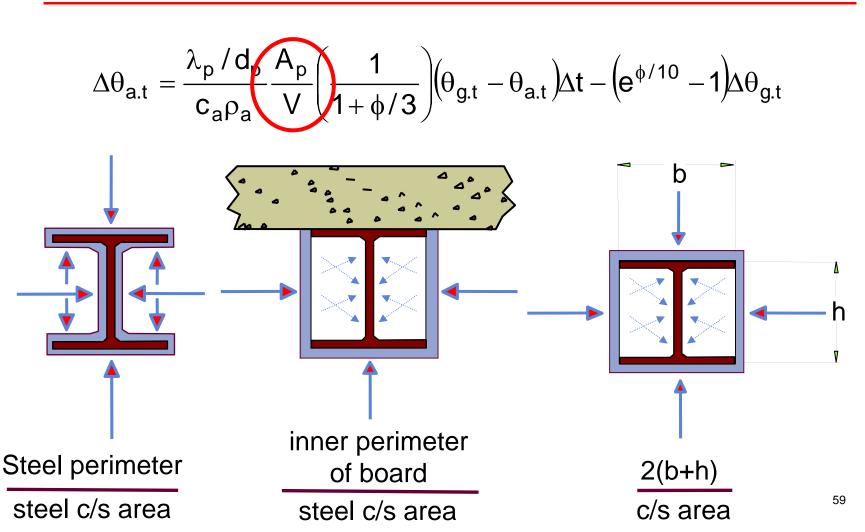


Temperature increase of protected steel Simplified equation of EC3

- Some heat stored in protection layer.
- Heat stored in protection layer relative to heat stored in steel

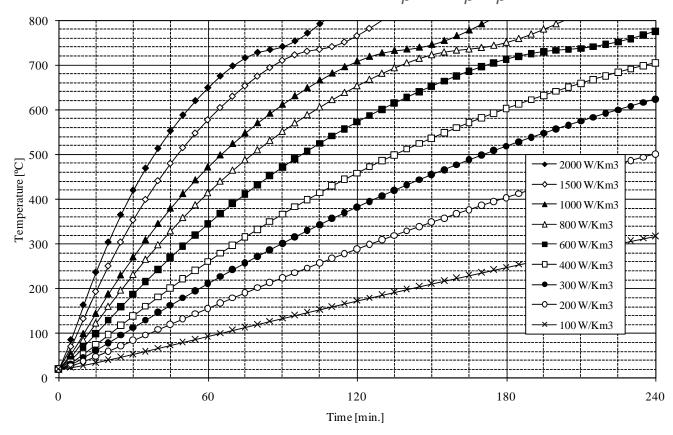
$$\phi = \frac{c_p \rho_p}{c_a \rho_a} d_p \, \frac{A_p}{V}$$

 Temperature rise of steel in time increment ∆t



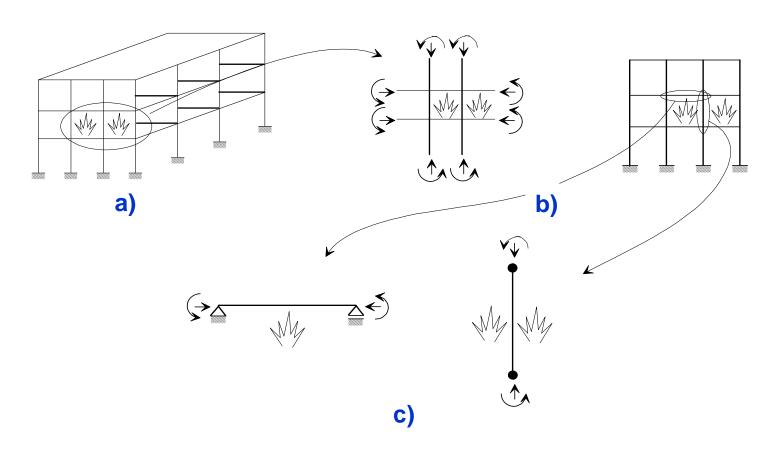
$$\Delta\theta_{a.t} = \frac{\lambda_p / d_p}{c_a \rho_a} \frac{A_p}{V} \left(\frac{1}{1 + \phi / 3} \right) \left(\theta_{g.t} - \theta_{a.t} \right) \Delta t - \left(e^{\phi / 10} - 1 \right) \Delta\theta_{g.t}$$

Section factor A_p/V Protected steel members



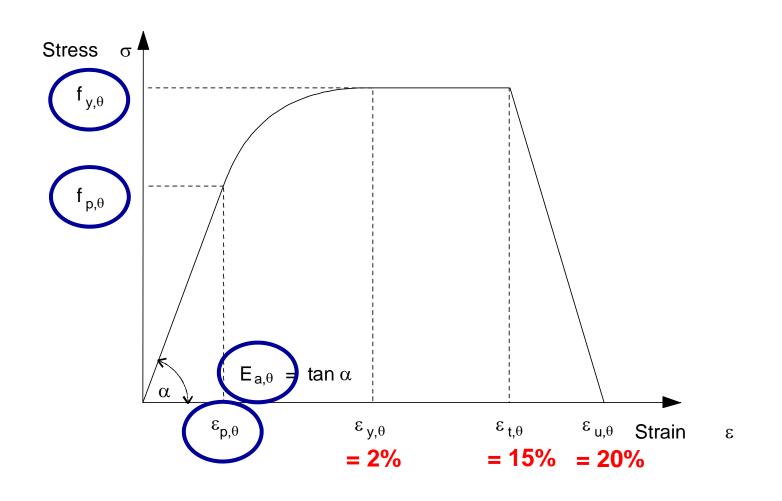
Nomogram for temperature Protected steel profiles

Nomogram for unprotected steel members subjected to the ISO 834 fire curve, for different values of $[A_p/V][\lambda_p/d_p]$ [W/Km3]


Fire Design of Steel Structures Four Steps

- 1. Definition of the thermal loading EC1
- 2. Definition of the mechanical loading EC0 +EC1
- 3. Calculation of temperature evolution within the structural members EC3
- 4. Calculation of the mechanical behaviour of the structure exposed to fire EC3

Degree of simplification of the structure

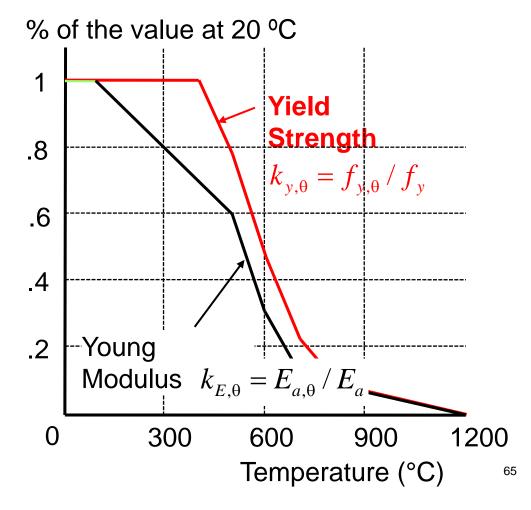


Analysis of: a) Global structure; b) Parts of the structure; c) Members

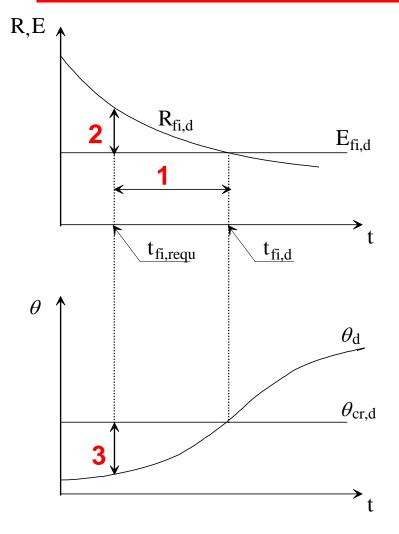
Mechanical properties of carbon steel Stress-strain relationship at elevated temperatures

Mechanical properties of carbon steel Stress-strain relationship at elevated temperatures

- ◆ Strength/stiffness reduction factors for elastic modulus and yield strength (2% total strain).
- ◆ Elastic modulus at 600°C reduced by about 70%.
- Yield strength at 600°C reduced by over 50%.



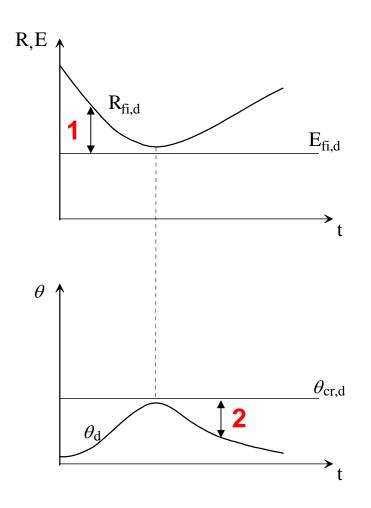
Reduction factors for stress-strain relationship of carbon steel at elevated temperatures


	Reduction factors at temperature θ_a relative to the value of f_y or E_a at 20°C				
Steel Temperature $ heta_{ m a}$	Reduction factor (relative to f _y) for effective yield strength	Reduction factor (relative to f_y) for proportional limit	Reduction factor (relative to E_a) for the slope of the linear elastic range		
	$k_{ m y, heta} = f_{ m y, heta}/f_{ m y}$	$k_{ m p, heta} = f_{ m p, heta}/f_{ m y}$	$k_{ m E, heta}~=~E_{ m a, heta}/E_{ m a}$		
20°C	1,000	1,000	1,000		
100°C	1,000	1,000	1,000		
200°C	1,000	0,807	0,900		
300°C	1,000	0,613	0,800		
400°C	1,000	0,420	0,700		
500°C	0,780	0,360	0,600		
600°C	0,470	0,180	0,310		
700°C	0,230	0,075	0,130		
800°C	0,110	0,050	0,090		
900°C	0,060	0,0375	0,0675		
1000°C	0,040	0,0250	0,0450		
1100°C	0,020	0,0125	0,0225		
1200°C	0,000	0,0000	0,0000		

Checking Fire Resistance: Strategies with nominal fires

- 1. Time:
 - $t_{fi,d} > t_{fi,requ}$
- 2. Load resistance:

$$R_{fi,d,t} > E_{fi,d}$$


3. Temperature:

$$\theta_{\rm d} < \theta_{\rm cr.d}$$

Checking Fire Resistance: Strategies with natural fires

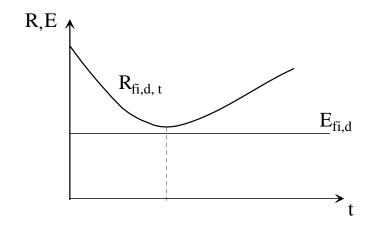
1. Load resistance:

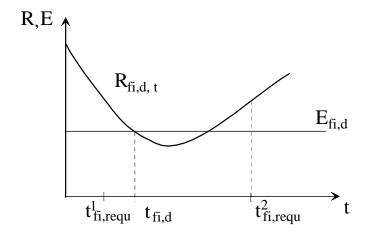
R_{fi,d,t} > E_{fi,d}
collapse is prevented during the complete duration of the fire including the decay phase or during a required period of time.

2. Temperature:

$$\theta_d < \theta_{cr,d}$$

collapse is prevented during the complete duration of the fire including the decay phase or during a required period of time.


Note: With the agreement of authorities, verification in the time domain can be also performed. The required periodo of time defining the fire resistance must be accepted by the authorities.



Checking Fire Resistance: Strategies with natural fires

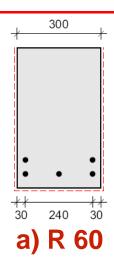
The Load-bearing function is ensured if collapse is prevented during the complete duration of the fire including the decay phase, or during a required period of time.

Collapse is prevented during the complete duration of the fire including the decay phase.

Collapse is prevented during a required period of time, t¹_{fi,req}.

Design procedures

- ☐ Tabulated data (EC2, EC4, EC6)
- ☐ Simple calculation models (All the Eurocodes)
- □ Advanced calculation models (All the Eurocodes)



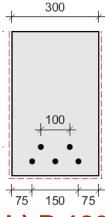
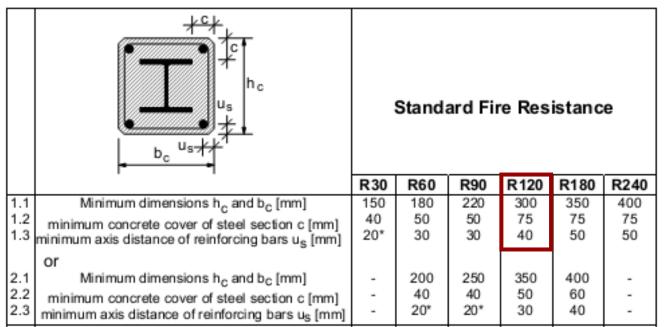

Eurocode 2: Tabulated data Fire resistance of a RC beam

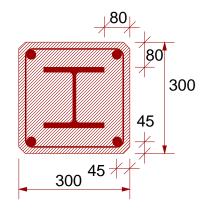
Table 5.5: Minimum dimensions and axis distances for simply supported beams made with reinforced and prestressed concrete

	Standard fire							
	resistance	Minimum dimensions (mm)						
		Possible combinations of a and b				Web thickness b _w		
		where a is the average a distance and b _{nin} is the win beam				Class WA	Class WB	Class WC
	1	2	3	4	5	6	7	8
a	R 30	b _{min} = 80 a = 25	120 20	160 15*	200 15*	80	80	80
	R 60	b _{tain} = 120 a = 40	160 35	200 30	300 25	100	80	100
	R 90	b _{min} = 150 a = 55	200 45	300 40	400 35	110	100	100
k	R 120	b _{min} = 200 a = 65	240 60	300 55	500 50	130	120	120
	R 180	h= 240 a = 80	300 70	400 65	600 60	150	150	140
	R 240	b _{in in} = 280 a = 90	350 80	500 75	700 70	170	170	160
	a _{td} = a + 10mm (see note below)							

For prestressed beams the increase of axis distance according to 5.2(5) should be noted.

a_{td} is the axis distance to the side of beam for the corner bars (or tendon or wire) of beams with only one layer of reinforcement. For values of b_{min} greater than that given in Column 4 no increase of a_{td} is required.


Normally the cover required by EN 1992-1-1 will control.

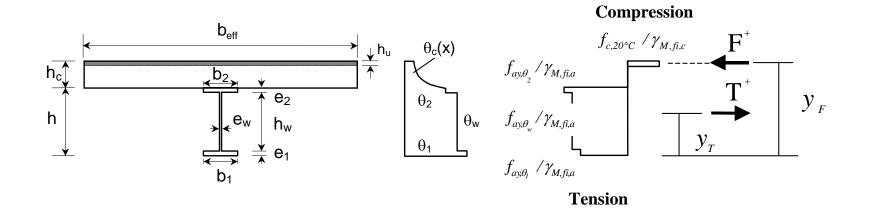


Eurocode 4: Tabulated data Fire resistance of a RC column

Table 4.4: Minimum cross-sectional dimensions, minimum concrete cover of the steel section and minimum axis distance of the reinforcing bars, of composite columns made of totally encased steel sections.

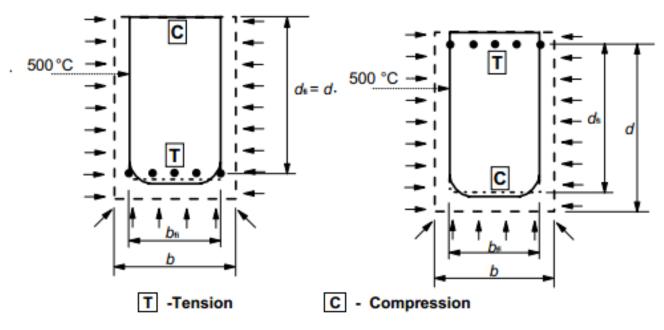
R 120

NOTE: *) These values have to be checked according to 4.4.1.2 of EN 1992-1-1


Design procedures

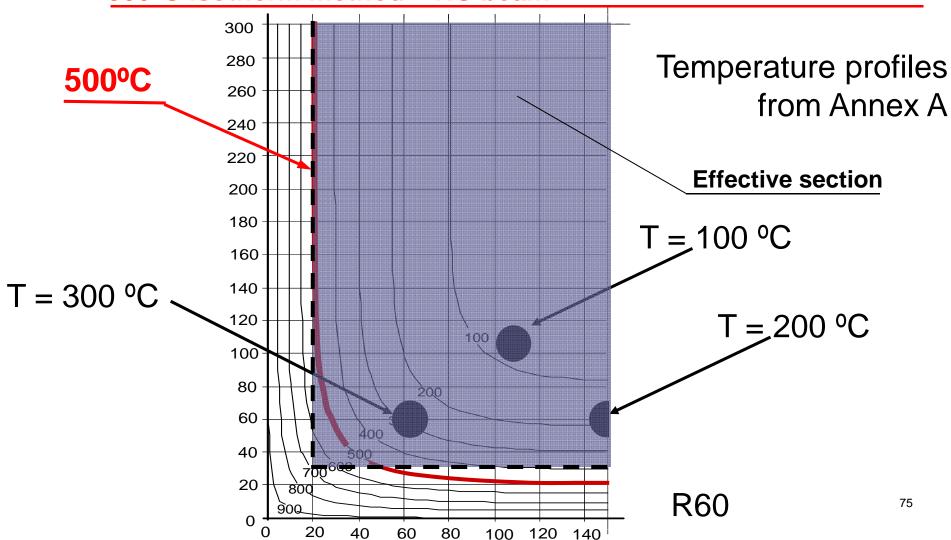
- □ Tabulated data (EC2, EC4, EC6)
- ☐ Simple calculation models (All the Eurocodes)
- □ Advanced calculation models (All the Eurocodes)

Eurocode 4: Simple calculation model Sagging moment resistance of a composite beam

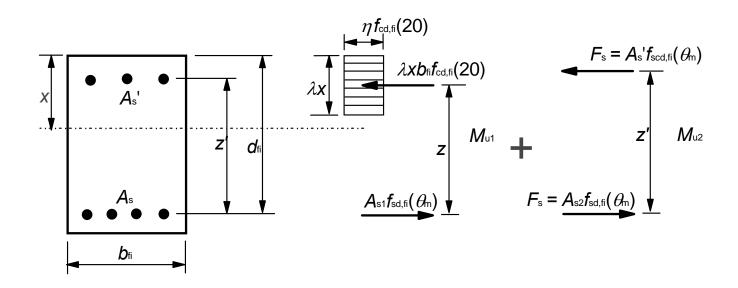

$$M_{fi,Rd}^+ = T(y_F - y_T)$$

Eurocode 2: Simplified calculation model 500°C isotherm method

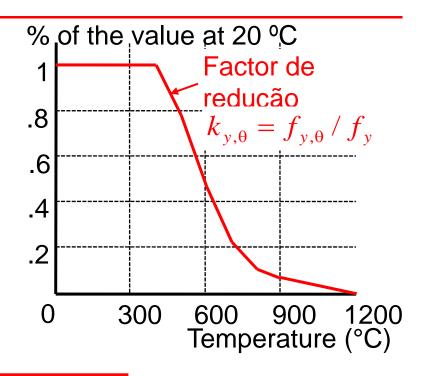
Damaged concrete, i.e. concrete with temperatures in excess of 500°C, is assumed not to contribute to the load bearing capacity of the member, whilst the residual concrete cross-section retains its initial values of strength and modulus of elasticity.


 a) fire exposure on three sides with the tension zone exposed

 b) fire exposure on three sides with the compression zone exposed


Eurocode 2: Simplified calculation model 500°C isotherm method – RC beam

Eurocode 2: Simplified calculation model Sagging moment resistance of a RC beam



Eurocode 3: Fire Resistance: Tension members - 1

• The design resistance of a tension member with uniform temperature θ_a is:

$$N_{fi,\theta,Rd} = k_{y,\theta} A f_y / \gamma_{M,fi}$$

or

$$N_{fi,\theta,Rd} = k_{y,\theta} N_{Rd} [\gamma_{MO} / \gamma_{M,fi}]$$

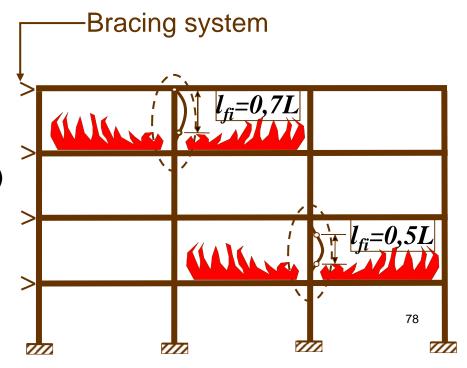
 N_{Rd} = design resistance of the cross-section $N_{pl,Rd}$ 77 for normal temperature design

Eurocode 3: Fire Resistance: Compression members with Class 1, 2 or 3 cross-sections - 1

Design buckling resistance of a compression member with uniform temperature θ_a is

$$N_{b,fi,\theta,Rd} = \chi_{fi}Ak_{y,\theta}f_y rac{1}{\gamma_{M,fi}}$$

With


$$\chi_{fi} = \frac{1}{\phi_{\theta} + \sqrt{\phi_{\theta}^2 - \overline{\lambda}_{\theta}^2}}$$

$$\phi_{\theta} = \frac{1}{2} \left[1 + \alpha \overline{\lambda}_{\theta} + \overline{\lambda}_{\theta}^{2} \right]$$

$$\alpha = 0.65\sqrt{235/f_y}$$
 (Curves a, b, c, d, a₀)

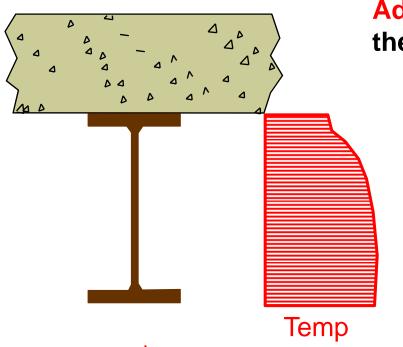
• Non.dimensional slenderness:

$$\overline{\lambda_{\theta}} = \overline{\lambda} \sqrt{k_{y,\theta} / k_{E,\theta}}$$

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or3 cross-sections with uniform temperature - 1

• The design moment resistance of a Class 1, 2 or Class 3 cross-section with a uniform temperature θ_a is:

$$\longrightarrow M_{fi,\theta,Rd} = M_{Rd} k_{y,\theta} \left(\frac{\gamma_{M0}}{\gamma_{M,fi}} \right)$$


$$M_{Rd} = M_{pl,Rd} - Class 1 \text{ or } 2 \text{ cross-sections}$$

$$M_{Rd} = M_{el,Rd} - Class 3 cross-sections$$

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or 3 cross-sections with non-uniform temperature - 2

Adaptation factors to take into account the non-uniform temperature distribution

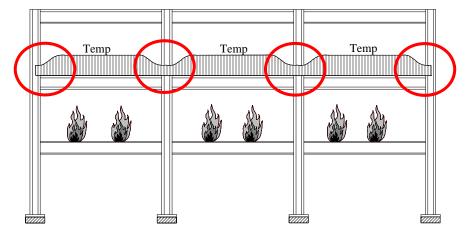
Moment Resistance:

$$M_{\text{fi},\theta,\text{Rd}} = M_{\text{Rd}} k_{y,\theta} \left(\frac{\gamma_{\text{M0}}}{\gamma_{\text{M,fi}}} \right) \frac{1}{\kappa_1 \kappa_2}$$

 K_I is an adaptation factor for non-uniform temperature across the cross-section

 $K_1=1,0$ for a beam exposed on all four sides

 $K_1=0,7$ for an unprotected beam exposed on three sides

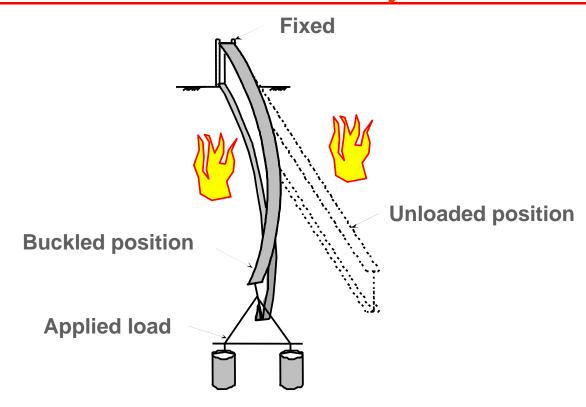

 $K_1=0.85$ for a protected beam exposed on three sides ⁸⁰

Eurocode 3: Fire Resistance: Laterally restrained beams with Class 1, 2 or 3 cross-sections with non-uniform temperature - 3

Adaptation factores to take into account the non-uniform temperature distribution

Moment Resistance:

$$M_{\text{fi},\theta,\text{Rd}} = M_{\text{Rd}} k_{y,\theta} \left(\frac{\gamma_{\text{M0}}}{\gamma_{\text{M,fi}}} \right) \frac{1}{\kappa_1 \kappa_2}$$


 K_2 is an adaptation factor for non-uniform temperature along the beam.

 K_2 =0,85 at the supports of a statically indeterminate beam K_2 =1.0 in all other cases

Eurocode 3: Fire Resistance: Laterally unrestrained beams - 1

Lateral-torsional buckling

Eurocode 3: Fire Resistance: Laterally unrestrained beams - 2

 Design lateral torsional buckling resistance moment of a laterally unrestrained beam at the max.
 temp. in the comp. flange *θ_{a.com}* is →

$$M_{b.fi.\theta.Rd} = \chi_{LT.fi} W_{y} k_{y.\theta.com} f_{y} \frac{1}{\gamma_{M.fi}}$$

• $\chi_{LT:fi}$ the reduction factor for lateral-torsional buckling in the fire design situation.

$$\chi_{LT,fi} = \frac{1}{\phi_{LT,\theta,com} + \sqrt{\left[\phi_{LT,\theta,com}\right]^2 - \left[\overline{\lambda}_{LT,\theta,com}\right]^2}}$$

$$\overline{\lambda}_{LT.\theta.com} = \overline{\lambda}_{LT} \sqrt{k_{y.\theta.com} / k_{E.\theta.com}}$$

$$\phi_{LT,\theta,com} = \frac{1}{2} \left[1 + \alpha \overline{\lambda}_{LT,\theta,com} + (\overline{\lambda}_{LT,\theta,com})^2 \right]$$

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_{y} f_{y}}{M_{cr}}}$$

$$\alpha = 0.65 \sqrt{235/f_y}$$

Eurocode 3: Fire Resistance Shear Resistance

Design shear resistance

$$V_{\text{fi,t,Rd}} = k_{y,\theta,\text{web}} V_{\text{Rd}} \left(\frac{\gamma_{\text{M,0}}}{\gamma_{\text{M,fi}}} \right)$$

 $V_{\rm Rd}$ is the shear resistance of the gross cross-section for normal temperature design, according to EN 1993-1-1.

 θ_{web} is the average temperature in the web of the section.

 $k_{y,\theta,web}$ is the reduction factor for the yield strength of steel at the steel temperature θ_{web} .

Eurocode 3: Members with Class 1, 2 or 3 cross-sections, subject to combined bending and axial compression - 1

Without lateral-torsional buckling

Class 1 and 2

$$\frac{N_{\text{fi,Ed}}}{\chi_{\text{min,fi}} \; A \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} + \frac{k_y \; M_{y,\text{fi,Ed}}}{W_{\text{pl,y}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} + \frac{k_z \; M_{z,\text{fi,Ed}}}{W_{\text{pl,z}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} \leq 1$$

Class 3

$$\frac{N_{\text{fi,Ed}}}{\chi_{\text{min,fi}} \; A \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} + \frac{k_y \; M_{y,\text{fi,Ed}}}{W_{\text{el,y}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} + \frac{k_z \; M_{z,\text{fi,Ed}}}{W_{\text{el,z}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{\text{M,fi}}}} \leq 1$$

Eurocode 3: Members with Class 1, 2 or 3 cross-sections, subject to combined bending and axial compression - 2

With lateral-torsional buckling

Class 1 and 2

$$\frac{N_{\text{fi,Ed}}}{\chi_{z,\text{fi}} \; A \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} + \frac{k_{LT} \; M_{y,\text{fi,Ed}}}{\chi_{LT,\text{fi}} \; W_{\text{pl,y}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} + \frac{k_z \; M_{z,\text{fi,Ed}}}{W_{\text{pl,z}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} \leq 1$$

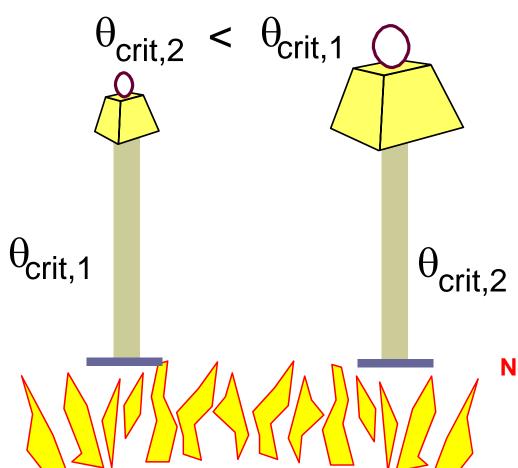
Class 3

$$\frac{N_{\text{fi,Ed}}}{\chi_{z,\text{fi}} \; A \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} + \frac{k_{LT} \; M_{y,\text{fi,Ed}}}{\chi_{LT,\text{fi}} \; W_{\text{el,y}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} + \frac{k_z \; M_{z,\text{fi,Ed}}}{W_{\text{el,z}} \; k_{y,\theta} \; \frac{f_y}{\gamma_{M,\text{fi}}}} \leq 1$$

Eurocode 3: Fire Resistance Members with Class 4 cross-sections


Two procedures:

- 1. In the absence of calculation a critical temperature of 350 °C should be considered (conservative results).
- 2. Alternatively use Annex E, considering the effective area and the effective section modulus determined in accordance with EN 1993-1-3 and EN 1993-1-5, i.e. based on the material properties at 20°C. For the design under fire conditions the design strength of steel should be taken as the 0,2 percent proof strength instead of the strength corresponding to 2% total strain.

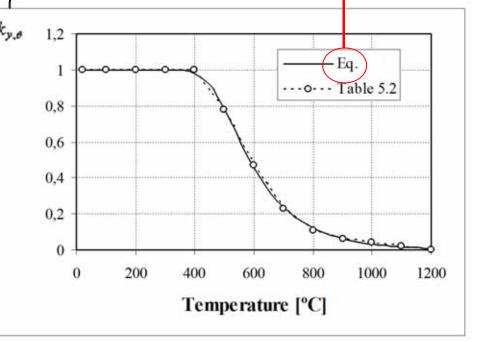

Eurocode 3: Fire Resistance Design yield strength to be used with simple calculation models

Eurocode3: Fire Resistance Concept of critical temperature - 1

The designer should provide the owner with value of the critical temperature, so that the thickness of the fire protection material can be defined in a more economical way.

Note: the concept of critical temperature should only be used if uniform temperature in the cross-section is adopted.

89


Eurocode 3: Fire Resistance Concept of critical temperature - 2

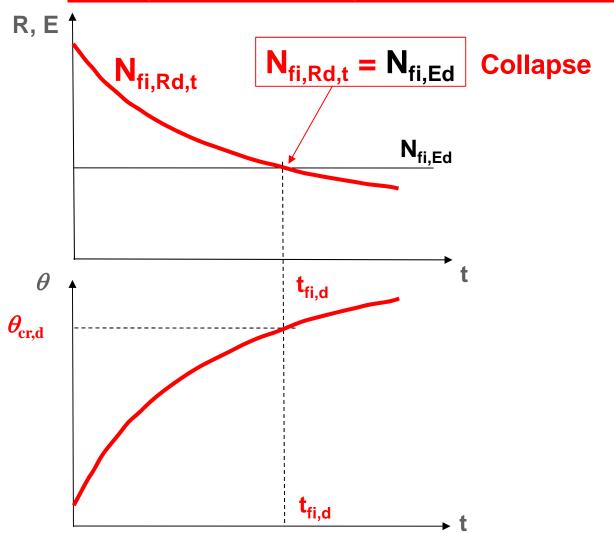
The best fit curve to the points of this table can be obtained as: -

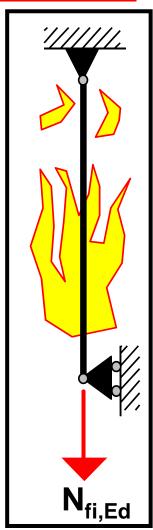
Reduction factors at temperature θ_a relative to the value at 20°C Reduction factor factor factor (relative to f_y) for effective for for effective factor for the slope of hot rolled at f_y	
SteelReduction factorReduction factorReduction factorReduction factorReduction factorReduction factorReduction (relative for the slope of for the slope of	
yield proportional limit the linear elastic range thin walle (Class	ve to f_y) design gth of and welded d sections
$k_{y,\theta} = f_{y,\theta}/f_y$ $k_{p,\theta} = f_{p,\theta}/f_y$ $k_{E,\theta} = E_{a,\theta}/E_a$ $k_{0.2p,\theta} = f_{p,\theta}/f_y$	$f_{0.2p, heta}/f_{ m y}$
20 °C 1.000 1.000 1.000 1.0	000
100 °C 1.000 1.000 1.000 1.0	000
200 °C 1.000 0.807 0.900 0.8	390
300 °C 1.000 0.613 0.800 0.7	80
400 °C 1.000 0.420 0.700 0.6	50
500 °C 0.780 0.360 0.600 0.5	30
600 °C 0.470 0.180 0.310 0.3	300
700 °C 0.230 0.075 0.130 0.1	30
800 °C 0.110 0.050 0.090 0.0	70
900 °C 0.060 0.0375 0.0675 0.0	050
1000 °C 0.040 0.0250 0.0450 0.0	030
1100 °C 0.020 0.0125 0.0225 0.0	020
1200 °C 0.000 0.0000 0.0000 0.0	000

NOTE: For intermediate values of the steel temperature, linear interpolation mabe used.

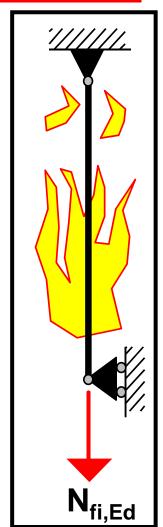
$$k_{y,\theta} = \left\{ 0.9674 \left(e^{\frac{\theta_a - 482}{39.19}} + 1 \right) \right\}^{-1/3.833} \le 1$$

Eurocode 3: Fire Resistance Concept of critical temperature - 3


$$k_{y,\theta} = \left\{0.9674 \left(e^{\frac{\theta_a - 482}{39.19}} + 1\right)\right\}^{-1/3.833} \le 1$$


$$\theta_{a,cr} = \left(k_{y,\theta}\right)^{-1}$$

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.9674k_{y,\theta}}\right]^{3.833} - 1 + 482$$

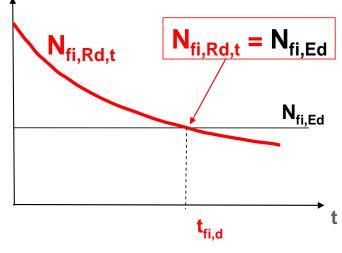


- Resistance at normal temperature:

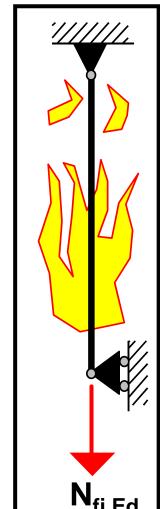
$$N_{Rd} = Af_y/\gamma_{M0}$$

- Resistance in fire situation:

$$N_{fi,Rd} = A (k_{y,\theta} f)_y / \gamma_{M,fi}$$

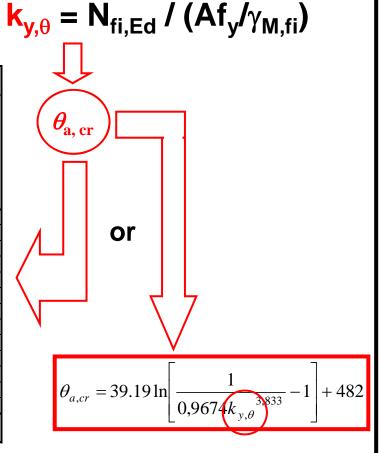

R, E

Collapse occurs when:


$$N_{fi,Rd,t} = N_{fi,Ed}$$

$$A_{y,\theta}f_y/\gamma_{M,fi} = N_{fi,Ed}$$

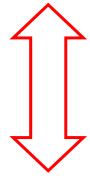
$$Ak_{y,\theta}f_{y}/\gamma_{M,fi} = N_{fi,Ed} \implies k_{y,\theta} = N_{fi,Ed} / (Af_{y}/\gamma_{M,fi})$$



By interpolation

	Reduction factors at temperature θ_a relative to the value of f_y of at 20°C				
Steel Temperature $ heta_a$	Reduction factor (relative to f_y) for effective yield strength	Reduction factor (relative to f_y) for proportional limit	Reduction factor (relative to E_a) for the slope of the linear elastic range	Reduction factor (relative to f _y) for the design strength of hot rolled and welded thin walled sections (Class 4)	
	$k_{y,\theta} = f_{y,\theta}/f_y$	$k_{p,\theta}=f_{p,\theta}/f_y$	$k_{E,\theta}=E_{a,\theta}/E_a$	$k_{0.2p,\theta} = f_{0.2p,\theta}/f_{\mathrm{y}}$	
20 ℃	1.000	1.000	1.000	1.000	
100 °C	1.000	1.000	1.000	1.000	
200 °C	1.000	0.807	0.900	0.890	
200.00	4 000	0.613	0.800	0.780	
$\theta \leftarrow$	– k	0.420	0.700	0.650	
a, cr	- '`y ,θ	0.360	0.600	0.530	
600 °C	0.470	0.180	0.310	0.300	
700 °C	0.230	0.075	0.130	0.130	
800 °C	0.110	0.050	0.090	0.070	
900 ℃	0.060	0.0375	0.0675	0.050	
1000 ℃	0.040	0.0250	0.0450	0.030	
1100 °C	0.020	0.0125	0.0225	0.020	
1200 °C	0.000	0.0000	0.0000	0.000	

NOTE: For intermediate values of the steel temperature, linear interpolation may be used.

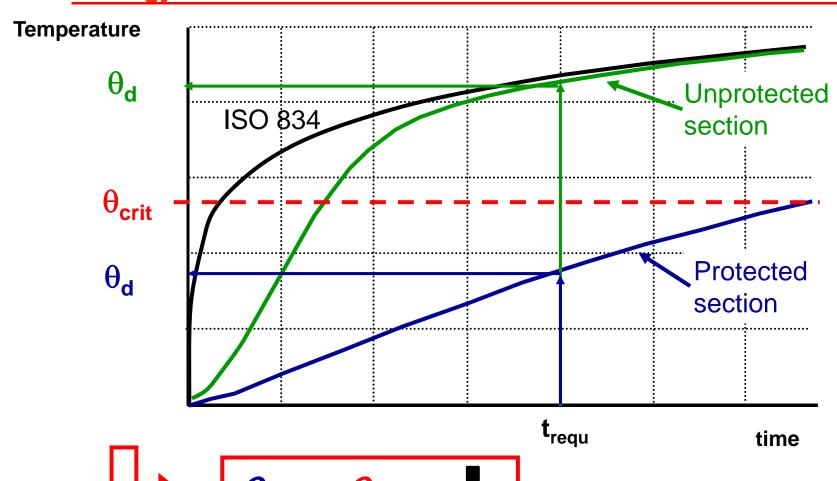


$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.967 (k_{y,\theta})^{3.833}} - 1 \right] + 482$$
 $k_{y,\theta} = N_{fi,Ed} / (Af_y / \gamma_{M,fi})$

$$k_{y,\theta} = N_{fi,Ed} / (Af_y / \gamma_{M,fi})$$

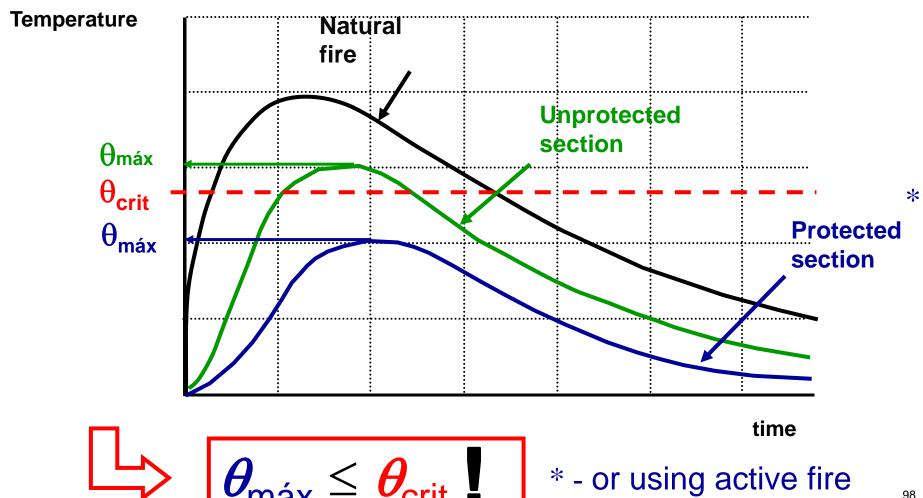
Eurocode 3

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0,9674 \mu_0^{3,833}} - 1 \right] + 482$$

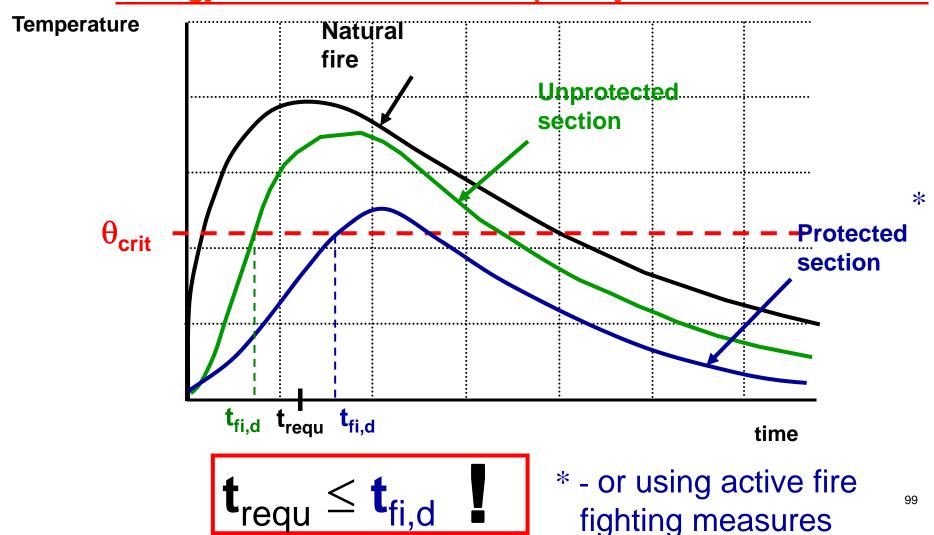

$$\mu_0 = \frac{E_{fi,d}}{R_{fi,d,0}} = k_{y,\theta} \quad \text{For the case of tension} \quad \square \qquad \qquad \mu_0 = \frac{E_{fi,d}}{R_{fi,d,0}} = \frac{N_{fi,Ed}}{Af_y/\gamma_{M,fi}}$$

$$\mu_0 = \frac{E_{fi,d}}{R_{fi,d,0}} = \frac{N_{fi,Ed}}{Af_v / \gamma_{M,fi}}$$

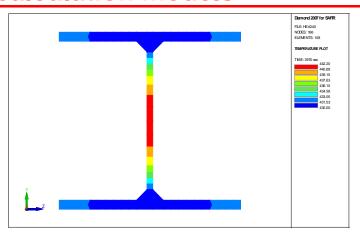
Checking Fire Resistance in the temperature domain: Strategy for nominal fires.



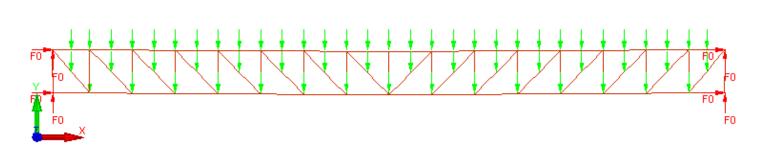
fighting measures


Checking Fire Resistance in the temperature domain: Strategy for natural fires

Checking Fire Resistance in the time domain: Strategy for natural fires – if accepted by the authorities


Design procedures

- ☐ Tabulated data (EC2, EC4, EC6)
- ☐ Simple calculation models (All the Eurocodes)
- □ Advanced calculation models (All the Eurocodes)



Advanced calculation models

Temperature field in a profile

Truss without the possibility of expanding longitudinally subjected (colapse time 66.1 min)

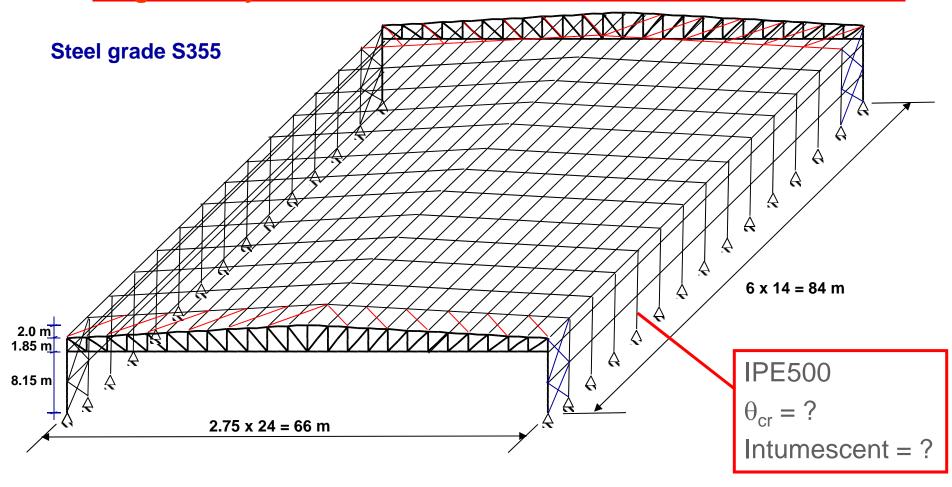
Diamond 2007 for SAFIR

FILE: PavFCPv1 NODES: 621 BEAMS: 326 TRUSSES: 0 SHELLS: 0 SOILS: 0

IMPOSED DOF PLOT
POINT LOADS PLOT
DISPLACEMENT PLOT (x 10)

TIME: 20 sec

------5.0 E-01 m


Examples using different methodologies. Fire resistance of steel structures

- □ Using tables from the suppliers of the fire protection material
 Prescriptive approach
- Comparison between simplified calculation methods and advanced calculation models – Prescriptive / Performance-based approach
- Cases where it is not possible to use simplified calculation method
 Performance-based approach

Single storey hall – R60

Load combinations

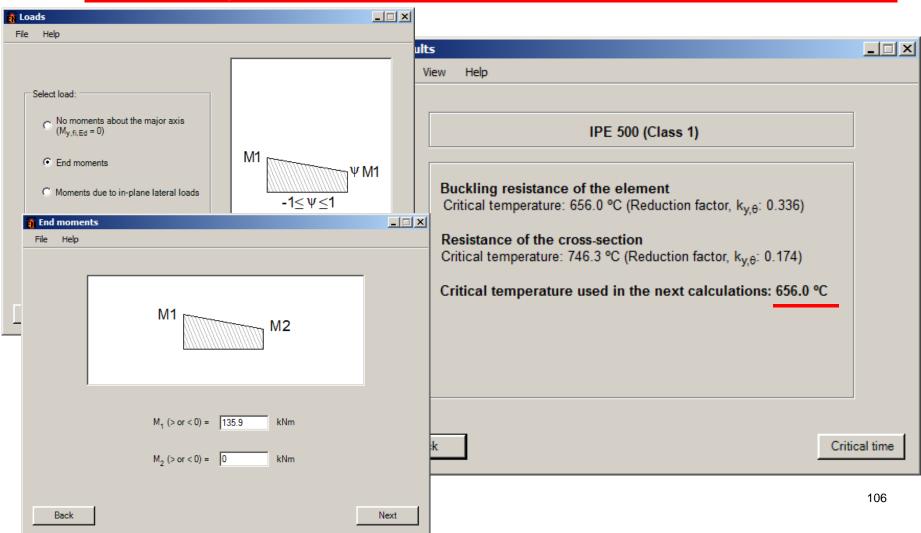
G - Dead load

Q - Live load in the roof

W - Wind

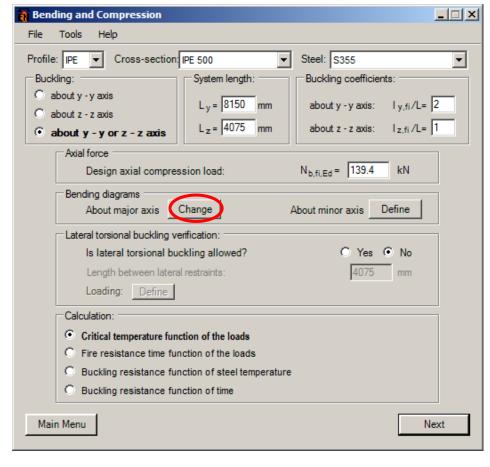
Load combination 1:
$$G + \psi_{1,Q}Q + \psi_{2,W}W = G + 0.0Q + 0.0W = G$$

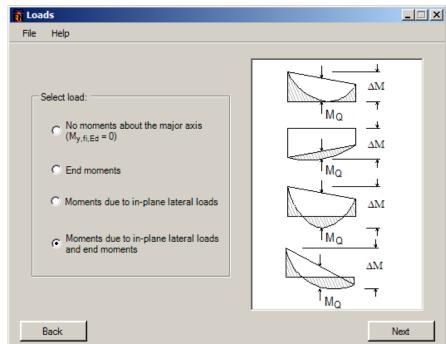
Load combination 2:
$$G + \psi_{1,W}W + \psi_{2,Q}Q = G + 0.2W + 0.0Q = G + 0.2W$$

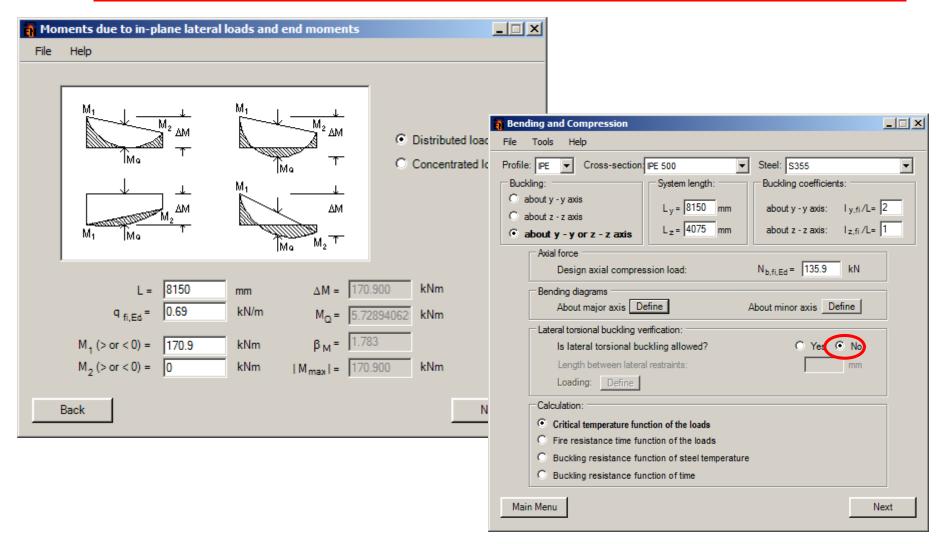


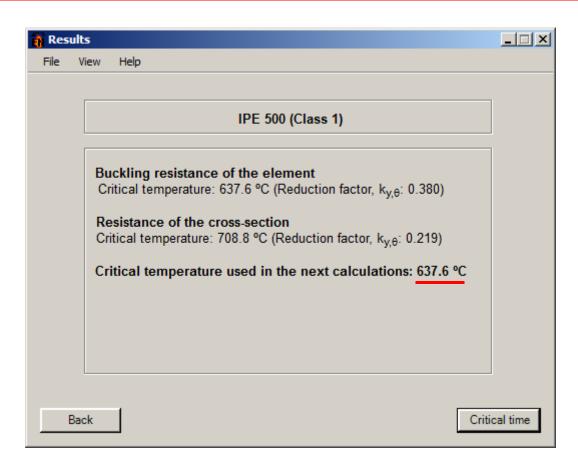
Section	N	M_1	M_2	$oldsymbol{q}$	$l_{fi,y}$	$l_{fi,z}$
-	[kN]	[kNm]	[kNm]	[kN/m]	[m]	[m]
IPE 500	-139.4	0	135.9	0	16.300	-
IPE 500	-139.4	0	0	0	_	4.075

Program Elefir-EN _ | _ | x | Elefir-EN Bending and Compression File Tools Help Fire design according to EC3 File Tools Help Project name: Cross-section: IPE 500 Steel: S355 Profile: IPE Buckling: System length: Buckling coefficients: C Element submitted to tension about v - v axis C Element submitted to compression L_v = 8150 mm about y - y axis: | l y,fi/L= 2 O about z - z axis. C Element submitted to shear about z - z axis: | I z.fi /L= |1 about y - y or z - z axis C Element submitted to bending © Element submitted to bending and axial force (cross-sectional verification) Axial force Element submitted to bending and compression N_{b,fi,Ed} = 135.9 Design axial compression load: C Element submitted to bending and shear Bending diagrams How to evaluate the critical temperature? About minor axis Define About major axis Carbon Steel Calculation: • Use interpolation on the table 3.1 from EN 1993-1-2 (recommended) Next Critical temperature function of the loads C Use the expression (4.22) from EN 1993-1-2 C Fire resistance time function of the loads O Buckling resistance function of steel temperature Stainless Steel Buckling resistance function of time Interpolation on the tables of Annex C from EN 1993-1-2 will be used Main Menu Next OK Cancel

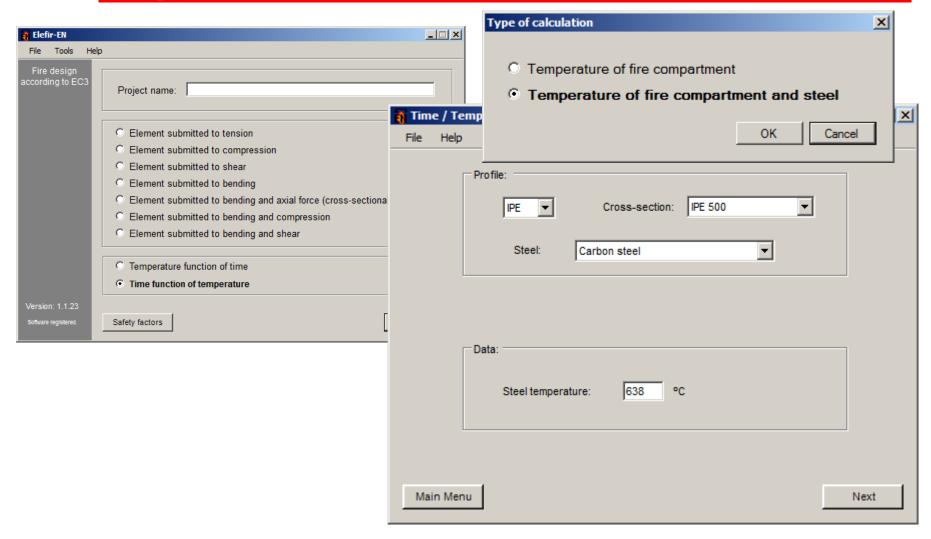




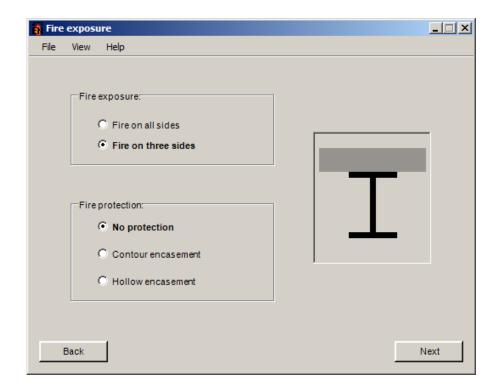

Section	N	M_1	M_2	\boldsymbol{q}	$l_{fi,y}$	$l_{fi,z}$
-	[kN]	[kNm]	[kNm]	[kN/m]	[m]	[m]
IPE 500	-135.9	0	170.9	0.69	16.300	-
	-135.9	0	0	0	-	4.075

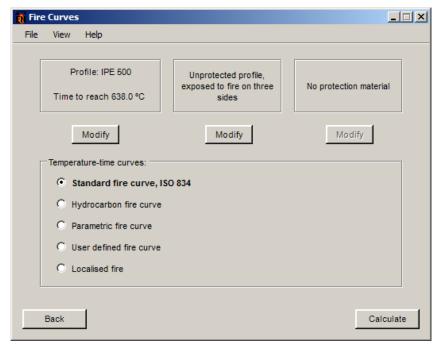


Critical temperature for load combination 2

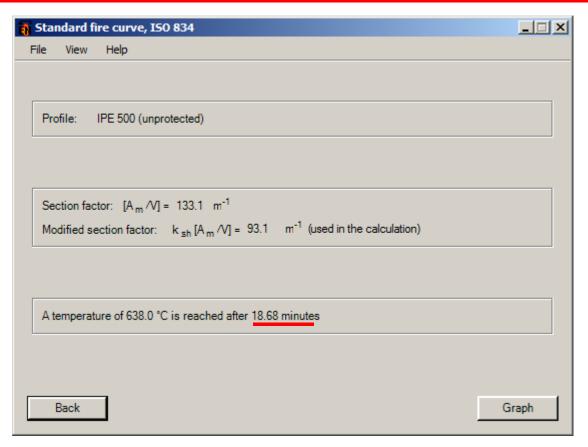

Critical temperature of the column IPE 500

$$\theta_{a,cr} = min(656 \, {}^{\circ}C; 638 \, {}^{\circ}C) = 638 \, {}^{\circ}C$$

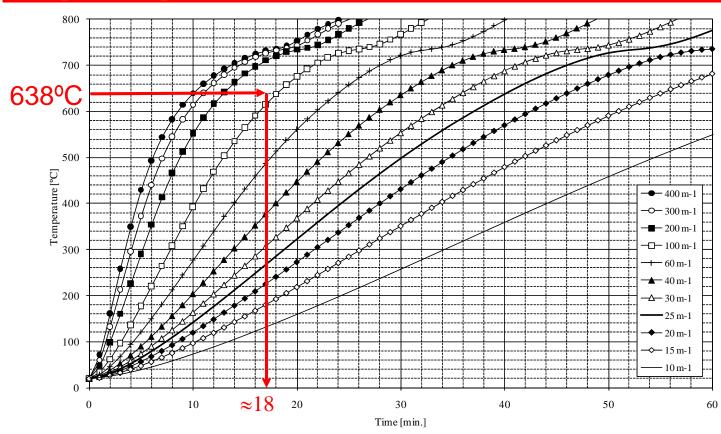

Critical time with ISO 834 Using Elefir-EN



Critical time with ISO 834 Using Elefir-EN



Critical time with ISO 834 Using Elefir-EN



 $t_{fi,d} < t_{requ} = 60 \text{ min}$ \Longrightarrow Fire protection is needed for a critical temperature of $\theta_{a,cr} = 638 \, ^{\circ}\text{C}$

Critical time with ISO 834 Using Nomogram

 $t_{fi,d} < t_{requ} = 60 \text{ min}$ Fire protection is needed for a critical temperature of $\theta_{a,cr} = 638 \, ^{\circ}\text{C}$

Table 3 continued: Three Sided I-Section Beams: 450°C

Table 4 continued:	Three Sided I-Section	Beams: 500°C	
THE PERSON NAMED IN COLUMN 2 I	THE OR SHARM PACCEDUR	Dealing, out w/	

Table 5 continued: Three Sided I-Section Beams; 550°C

1	60 minutes							
Section factor up to m ⁻¹	Thickness mm	Section factor up to m ⁻¹	Thickness mm	Secti				
25	0.250	175	0.888					
30	0,250	100	0.910					
35	0.297	185	0.933					
-40	0.305	190	0.955	-				
45	0.324	195	0.978					
59	0.342	200	1,000					
65	0.361	2005	1.116					
60	0.379	210	1.231					
65	0.398	215	1,347					
70	0.416	2230	1.482]				
75	0.433	225	1.576					
80	0.460	230	1,693					
85	0.483	2:35	1.809					
90	0.505	240	1.924					
95	0.528	245	2.040					
100	0.660	250	2.156					
105	0.573	255	2.271					
110	0.595	200	2.386					
115	0.618	265	2.502					
120	0.840	270	2.617	l				
125	0.663	275	2.733	l				
130	0.685	280	2.849					
135	0.708	285	2.964					
140	0.730	290	3.080					
145	0.753	295	3.195					
160	0.775	300	3.3111					
165	0.798	305	3.426					
160	0.820	310	3.642					
165	0.843	315	3.657					
170	0.865							

Thickness is intumescent or	ly. Beams with a cor	della eteror
Dazen T. eli li A. Girectori	<i>iX</i> 11	· Marian and

60 minutes							
Section factor up to m ¹	Thickness mm	Section factor up to m ⁻¹	Thick mr				
30	0.228	180	0.71				
36	0.234	185	0.8				
40	0.250	190	0.8				
45	0.266	195	0.8				
50	0.283	200	0.6				
55	0.299	205	0.9				
60	0.315	210	0.8				
-66	0.332	215	0.9				
70	0.348.	220	0.9				
75	0.364	225	0.9				
50	0,384	230	1.0				
85	0.397	235	1.10				
90	0.413	240	1.2				
95	0.433	245	1.3				
100	0.454	250	1.4				
106	0.476	255	1.5				
110	0.497	200	1.6				
115	0.519	265	1.75				
120	0,540 -	270	1.6				
125	0.562	275	1.9				
130	0,583	280	2.0				
135	0.606	285	2.1				
140	0.626	290	2.2				
145	0.648	295	2.3				
150	0.869	300	2.4				
155	0.891	305	2.5				
160	0.712	310	2.6				
165	0.734	315	27				
170	0.755	320	2.8				
175	0.777						

- 1								
0		60 mi	nutes		90 m	inutes	120 n	ninutes
	Section factor up to m"	Thickness mm	Section factor up to m ⁻¹	Thickness mm	Section factor up to m	Thickness mm	Section factor up to m ⁻¹	Thickness mm
	30	0.228	150	0.721	155	1,000	160	3,144
	35	0.233	155	0.743	190	1.134	165	3.242
	400	0.245	190	0.766	1635	1,357	170	3,341
	45	0.257	196	0.786	170	1,401	175	3,433
	50	0.270	200	0.808	176	1.535	160	3.437
	55	0.282	206	0.830	150	1.068	185	3,635
	60	0.294	210	0.852	185	1.802		
	- 66	0.307	215	0.874	190	1.936		
	70	0.319	220	0.896	196	2.070		
	75	0.331	225	0.917	200	2.203		
	80	0.344	230	0.838	206	2.337		
3	86	0.356	235	0.961	210	2.471		
:	20	0.368	240	0.983	215	2,004		
	95	0.381	245	1.015	220	2.738		
Ш	100	0.393	250	1,092	225	2.872		
: 1	105	0.405	255	1.168	230	3,005		
3 [110	0.418	260	1.244	235	3 139		
1	115	0.437	205	1,320	240	3.273		
ч	120	0.459	270	1.297	245	3.407		
Н	125	0.481	275	1.473	250	3 540		
: [130	0.503	280	1.549	255	3.674		
П	135	0.525	285	1,626				
1	1-90	0.546	290	1.702				
П	145	0.568	235	1.778				
H	190	0.590	300	1 854				
Н	155	0.612	305	1.931				
: 1	160	0.634	310	2.007				
H	165	0.655	315	2.093				
.	170	0.677	320	2.159				
ı	175	0.689	100000	A TANK				

Thickness is intumescent only. Beams with

Thickness is interrespent only. Beams with a concrete also,

Thickness of intumescent painting

... 600°C, 620°C, 650°C, ...

Table 7 continued: Three Sided I-Section Beams: 620°C

$$\theta_{a,cr}$$
 = 638 °C

A_m	$= 133.1 \approx 135 m^{-1}$
V	100.11

	60 minutes			90 minutes 120 minu				ninutes	
Section factor up to m ⁻¹	Thickness mm								
45	0.235	185	0.518	50	0.420	185	1.000	40	0.945
50	0.244	190	0.530	55	0.441	190	1.101	45	1.023
55	0.254	195	0.543	60	0.463	195	1.202	50	1.101
60	0.263	200	0.555	65	0.484	200	1,303	55	1.179
65	0.272	205	0.587	70	0.506	205	1.403	60	1.257
70	0.281	210	0.619	75	0.527	210	1.504	65	1.335
75	0.291	215	0.650	80	0.549	215	1.605	70	1.413
80	0.300	220	0.682	85	0.570	220	1.706	75	1.491
85	0.309	225	0.714	90	0.592	225	1.807	80	1.569
90	0.318	230	0.746	95	0.613	230	1.908	85	1.647
95	0.328	235	0.778	100	0.635	235	2.008	90	1.725
100	0.337	240	0.809	105	0.656	240	2.109	95	1.803
105	0.346	245	0.841	110	0.678	245	2,210	100	1.881
110	0.355	250	0.873	115	0.699	250	2.311	105	1.96
115	0.365	255	0.905	120	0.721	255	2.412	110	2.038
120	0.374	260	0.936	125	0.742	260	2.513	115	2.116
125	0.383	265	0.968	130	0.764	265	2.614	120	2.194
138	0.392	270	1.000	135	0.785	270	2.714	125	2.272
135	0.402	275	1.063	140	0.807	275	2.815	130	2.35
148	0.411	280	1.126	145	0.828	280	2.916	135	2.428
145	0,420	285	1.190	150	0.850	285	3.017	140	2.506
150	0.432	290	1.253	155	0.871	290	3.118	145	2.584

Thickness of intumescent painting

In some Countries default temperatures are suggested if no calculation is made. Normally for columns or other members susceptible of instability phenomena a critical temperature of 500°C is suggested.

If, instead of a critical temperature of 638°C, a critical temperature of 500°C was used, a thickness of 0,605 mm would be obtained.

$$\theta_{cr} = 638^{\circ}C => e = 0,402 \text{ mm}$$

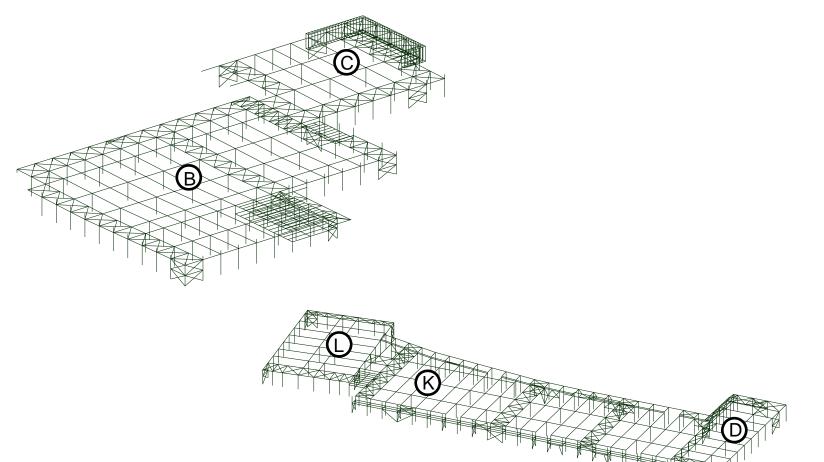
More than 50%

$$\theta_{cr} = 500^{\circ}\text{C} => e = 0.605 \text{ mm}$$

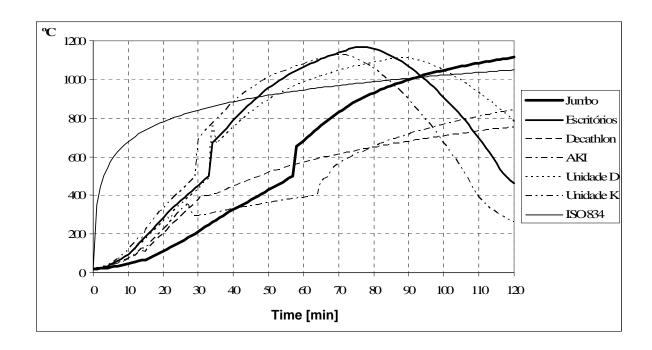
Examples using different methodologies. Fire resistance of steel structures

- □ Using tables from the suppliers of the fire protection material
 Prescriptive approach
- □ Comparison between simplified calculation methods and advanced calculation models Prescriptive / Performance-based approach
- □ Cases where it is not possible to use simplified calculation method
 Performance-based approach

BARREIRO RETAIL PARK



Required fire resistance 90 minutes (R90)


Different zones for fire scenarios

Temperature development for different fire scenarios

Temperatures obtained using the program Ozone

Unit B - Jumbo

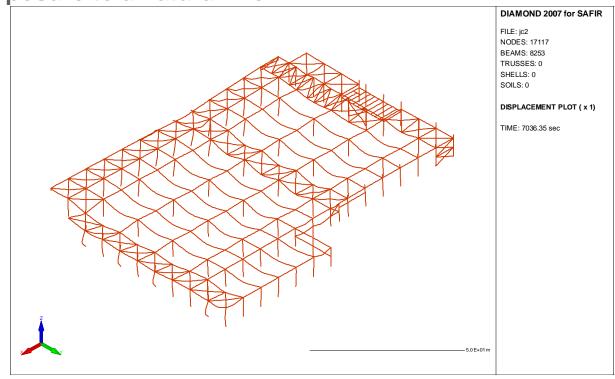
Combination of actions:

$$1.0G_k + \psi_{1,1}Q_{k,1} = 1.0G_k + 0.0Q_{k,1} = G_k$$

	N _{Ed}	\mathbf{M}_1	\mathbf{M}_2		L	$\theta_{ m cr}$	$t_{\rm fi,d}$
	(kN)	(kN. m)	(kN.m)	l _{fi} /L	(m)	(°C)	(min)
HEA 260	80	0.00	23	1.0	7.3	672.9	19.25
HEA 240	34	0.00	45	1.0	7.3	593.5	15.23
IPE 360	0.00	76.0	0.0	-	-	682.8	17.92

Without fire protection

	$\theta_{ m cr}$	ISO	Natural Fire Simplified Method	Natural Fire Advanced Method
	(°C)	(min)	(min)	(min)
HEA 260	672.9	> 90	> 90	
HEA 240	593.5	80.8	> 90	> 90
IPE 360	682.8	> 90	> 90	

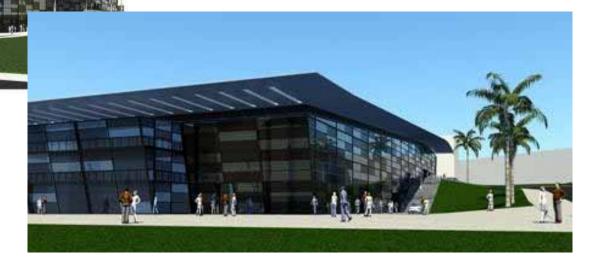

With fire protection for R60 and a critical temperature of 500°C

Deformed shape Obtained with Advanced Calculation Methods

Deformed shape of Unit B (Jumbo supermarket) after 117 minutes of exposure to a natural fire

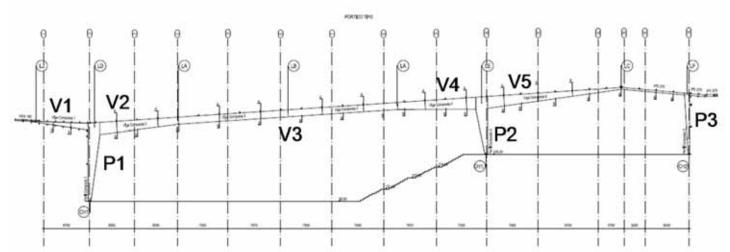
Software: GiD (for the numerical model mesh); SAFIR (for the analysis)

Examples using different methodologies. Fire resistance of steel structures


- □ Using tables from the suppliers of the fire protection material
 Prescriptive approach
- □ Comparison between simplified calculation methods and advanced calculation models Prescriptive / Performance-based approach
- ☐ Cases where it is not possible to use simplified calculation method Performance-based approach

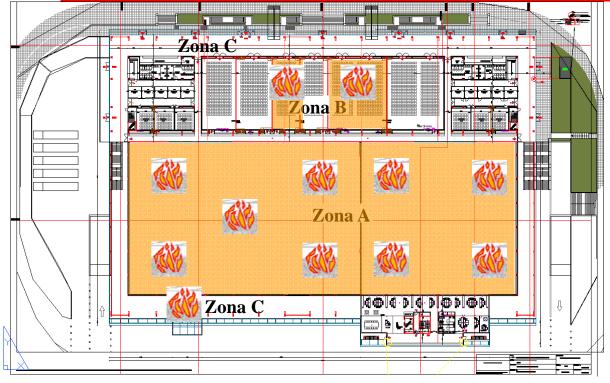
EXHIBITION CENTRE

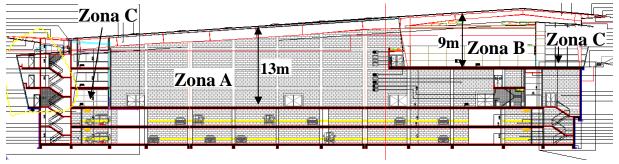
Required fire resistance 120 minutes (R120)



Choice of the structural analysis

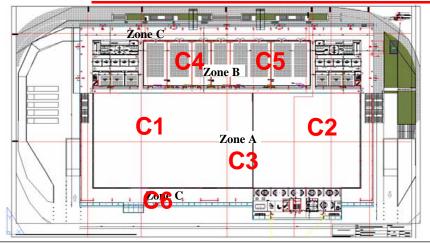
The main structure is made of non-uniform class 4 elements. There are no simplified methods, for the time being, for such type of elements. Two options were possible:

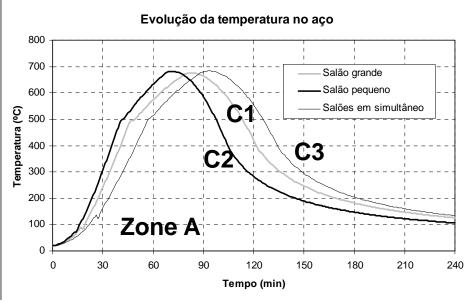

- Using a prescriptive approach, protect the structure for a citical temperature of 350°C;
- Using performance-based approach with advanced claculation methods.

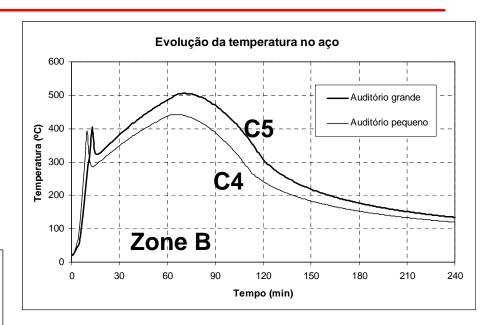

Fire scenarios

6 fire scenarios

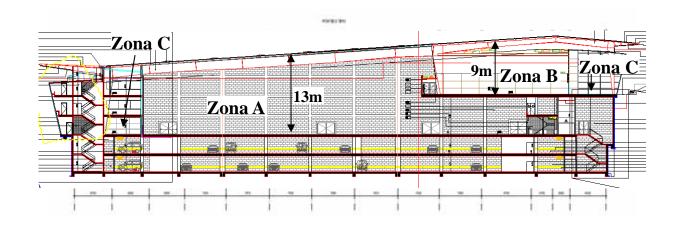
Fire load density reduced by 39% due to the sprinklers


Fire resistance (R120)



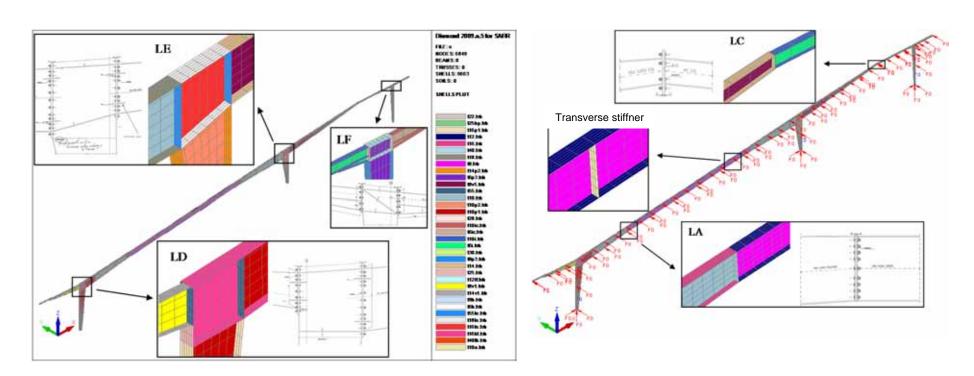


Fire scenarios



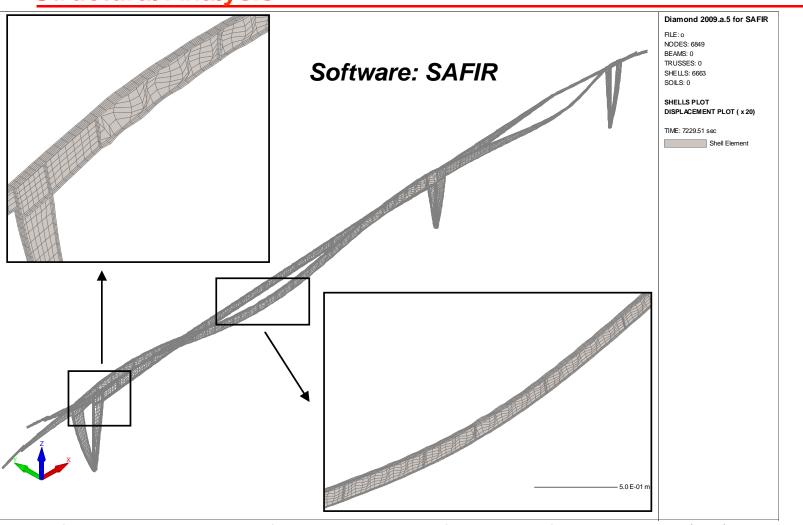
C1-5 - Software OZoneC6 is a localized fire inZone C - Elefir-EN

Main Structure



Structural Analysis

Main structure – portal frame with built-up non-uniform class 4 steel elements



Software: GiD (for the numerical model mesh); SAFIR (for the analysis)

Structural Analysis

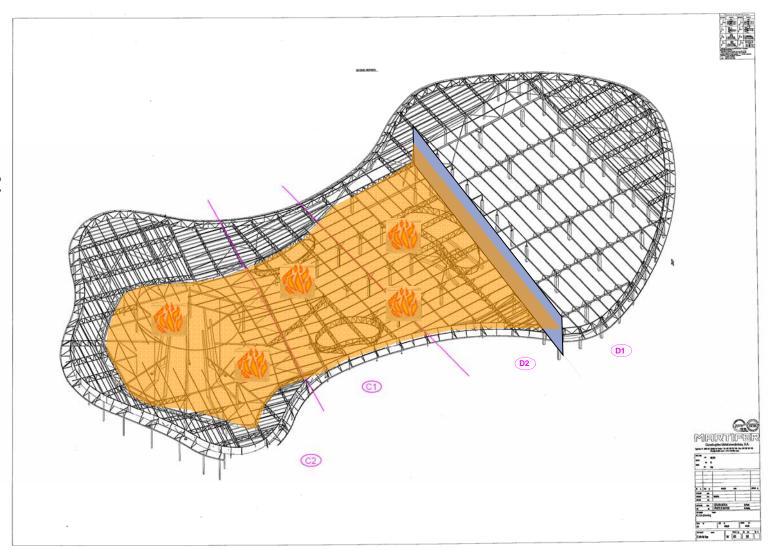
Deformed shape at Zone A, for the combination of actions 1, after 120 minutes (x20)

Conclusions

A performance-based analysis, demonstrated in this study that, protecting the structure for a standard fire resistance of 60 minutes (R60), considering a critical temperature of 500°C, the load-bearing function is ensured during the complete duration of the fire, including the cooling phase.

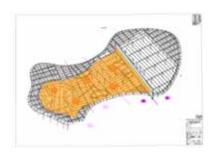
The steel structure of the Center for Exhibitions and Fairs in Oeiras consists of class 4 cross section profiles. In a prescriptive approach and without making any calculation, this structure should have been protected for a critical temperature of 350°C and for R120.

Fire resistance of the steel roof of the Shopping Centre Dolce Vita in Braga, Portugal



Scenario 2

Fire in the compartment D2, C1 and C2



Scenario 2

Fire in the compartment D2, C1 and C2

It was assumed that the fire would developed in all the 3 parts D2, C1 and C2.

Maximum area: $A_{f,max} = 7560 \text{ m}^2$

Fire area: $A_{fi} = 7560 \text{ m}^2$

Openings: the openings area was 554.4 m², located at 10.50 m above the floor level, plus an area of 762 m² in a glass façade. It was assumed that 10% of the openings would be opened until 400°C, 50% between 400°C and 500°C and 100% for temperatures higher 500°C (stepwise variation).

Compartment height: 12.67 m

Walls: concrete blocks

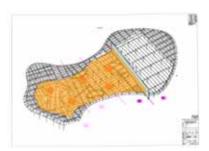
Ceiling: Sandwich panels with 0.75 mm thickness steel plate and

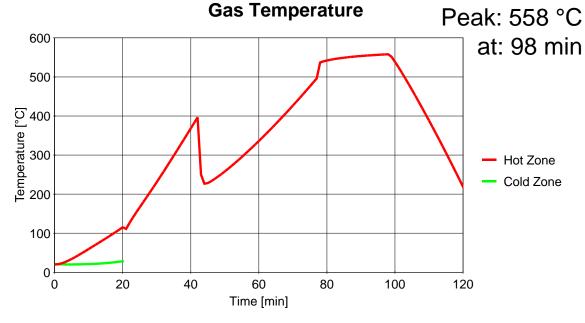
rock wool of 40 mm thickness and 125 kg/m³ density.

Rate of Heat Release: RHR_f = 250 kW/m²

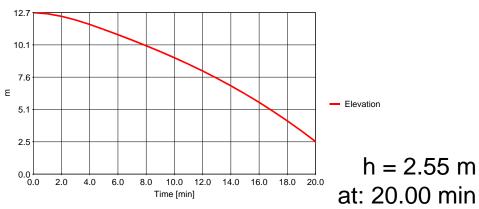
Fire growth rate: high, $t_{\alpha} = 150 \text{ s}$ Fire load density: $q_{f,k} = 730 \text{ MJ/m}^2$

Combustion factor: m = 1.0



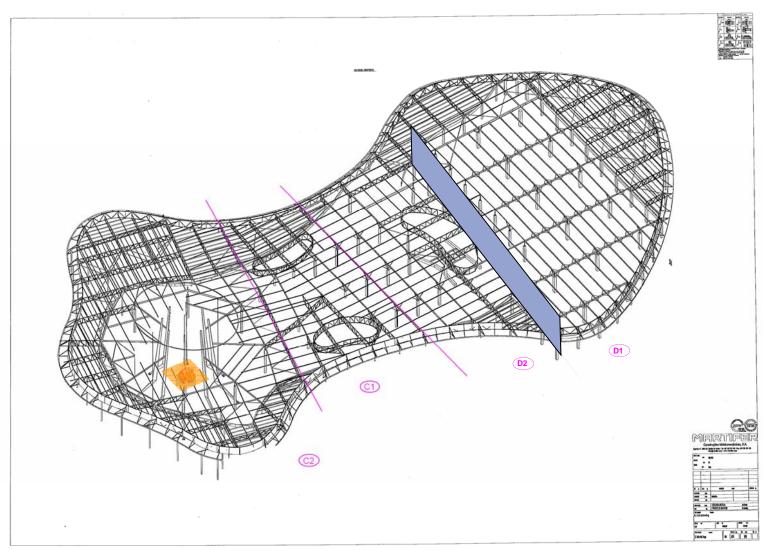


OZONE


Scenario 2

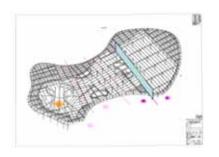
Fire in the compartment D2, C1 and C2

Zones Interface Elevation



Scenario 4

Localise fire at floor level 1 of part C2



I was considered a localise fire at the floor level 1 of part C2.

Scenario 4

Localise fire at floor level 1 of part C2

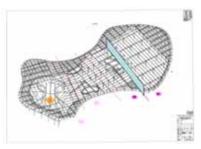
<u>Fire diameter:</u> $d_{fi} = 10 \text{ m}$ Temperature calculated at different heights

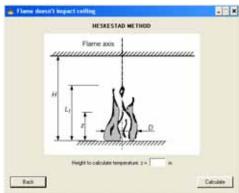
Compartment height: 36 m

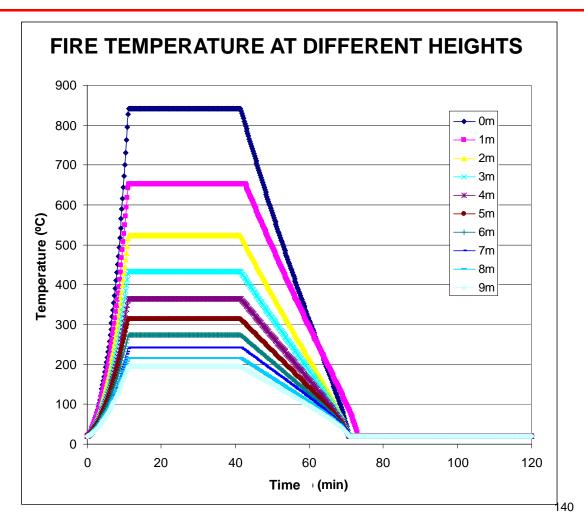
Rate of Heat Release: RHR_f = 250 kW/m²

Fire growth rate: high, $t_{\alpha} = 150 \text{ s}$ Fire load density: $q_{f,k} = 730 \text{ MJ/m}^2$

Combustion factor: m = 1.0

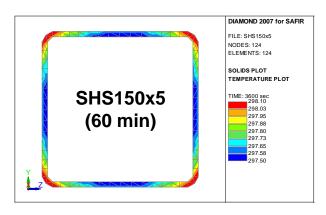


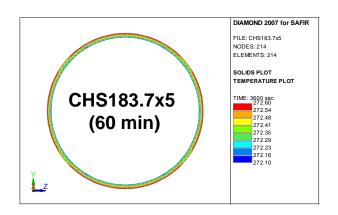


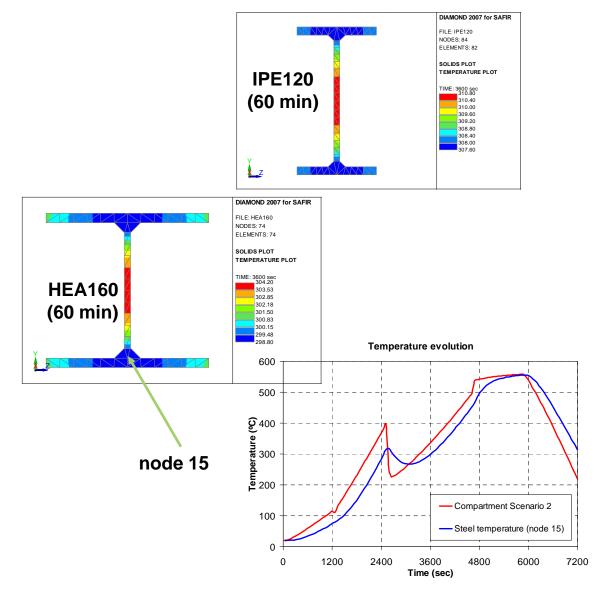

Localised fire

Scenario 4

Localise fire at floor level 1 of part C2

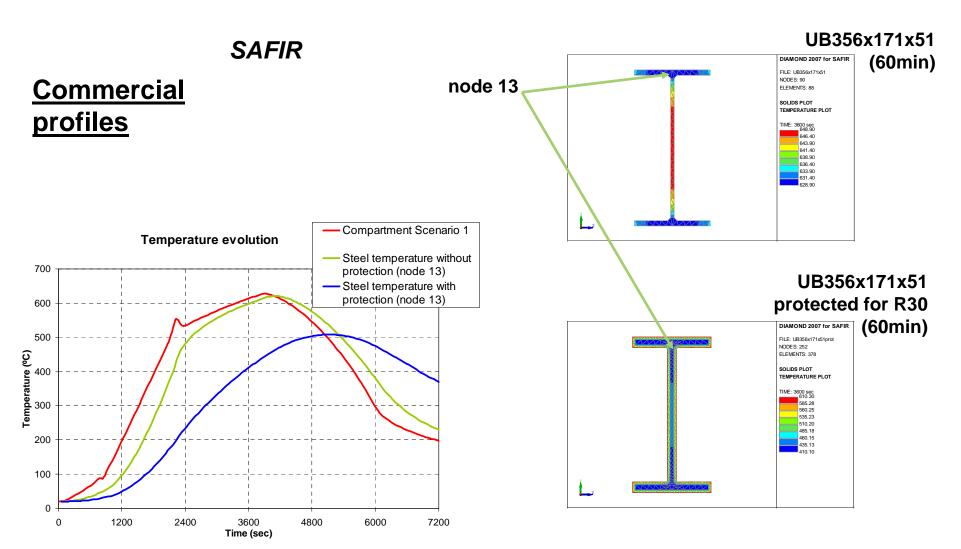





universidade de aveiro

SAFIR

Commercial profiles



DIAMOND 2007 for SAFIR FILE: pilarClasse4-2010

ME.tsh

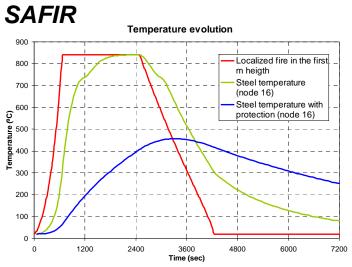
piso1-1 m.tsh piso2-9 m.tsh

piso1-3m.tsh piso1-4m.tsh piso1-5m.tsh

piso1-6m.tsh piso1-7m.tsh piso2-8m.tsh

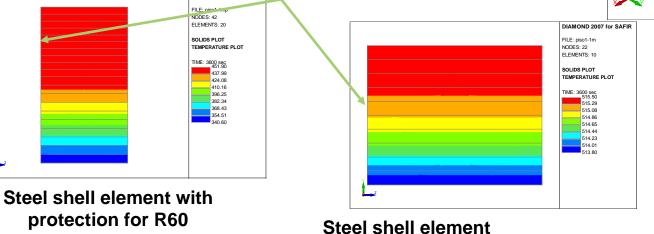
8mm.tsh 12mm.tsh piso2M9-8mm.tsh

NODES: 4502 BEAMS: 0 TRUSSES: 0 SHELLS: 4496 SOILS: 0


SHELLS PLOT

8

[mm]143


Built-up section profiles

(60min)

DIAMOND 2007 for SAFIR

(60min)

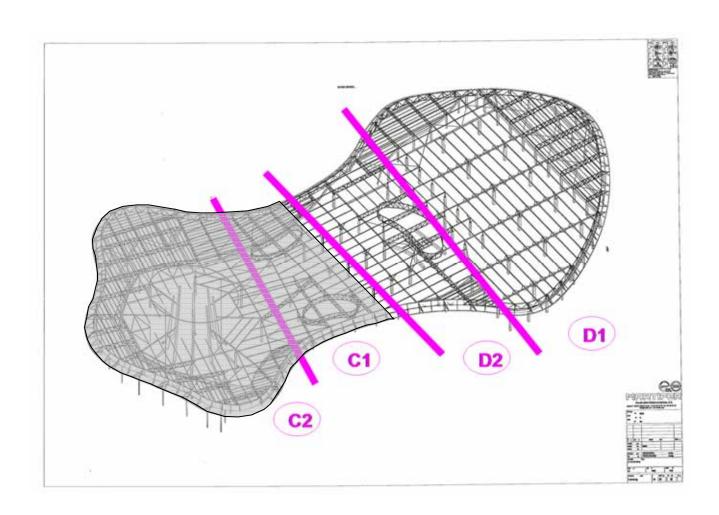
Mechanical actions

$$1.0G_k + \psi_{1.1}Q_{k.1} = 1.0G_k + 0.7Q_{k.1}$$

Permanent loads:

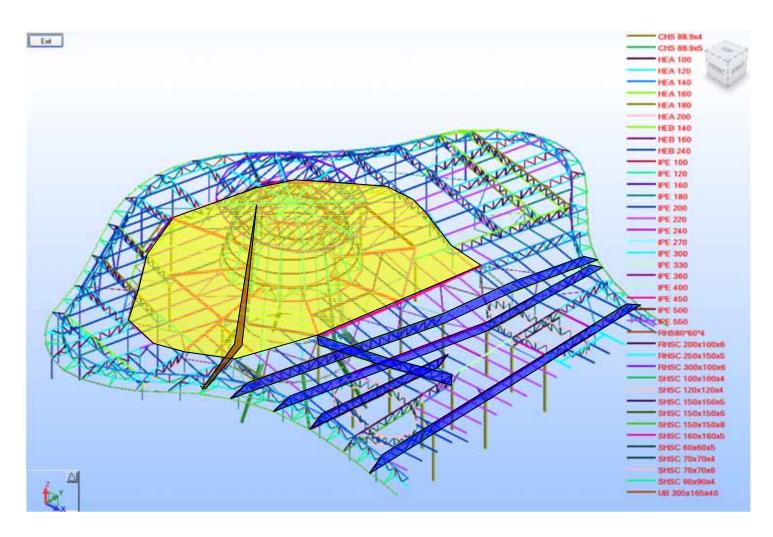
>77 kN/m³ - dead weight of the steel profiles;

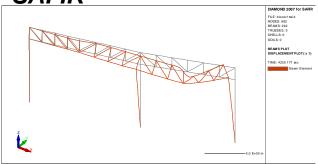
>0.5 kN/m² - dead weight of the roof;

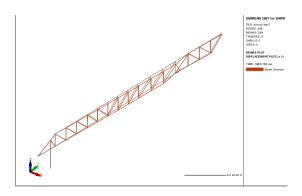

>0.3 KN/m² - others permanent loads.

Imposed load:

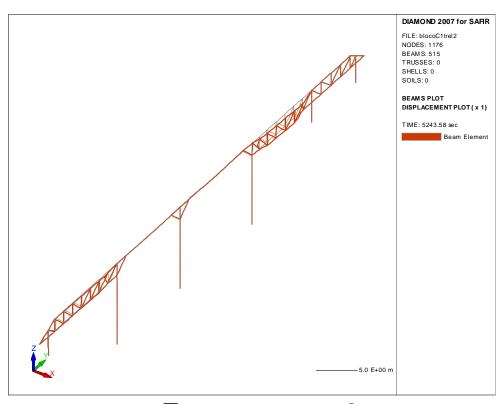
>0.5 kN/m² - publicity panels and other supended objects from the ceiling.






Part C1 with the Fire scenario 2

SAFIR

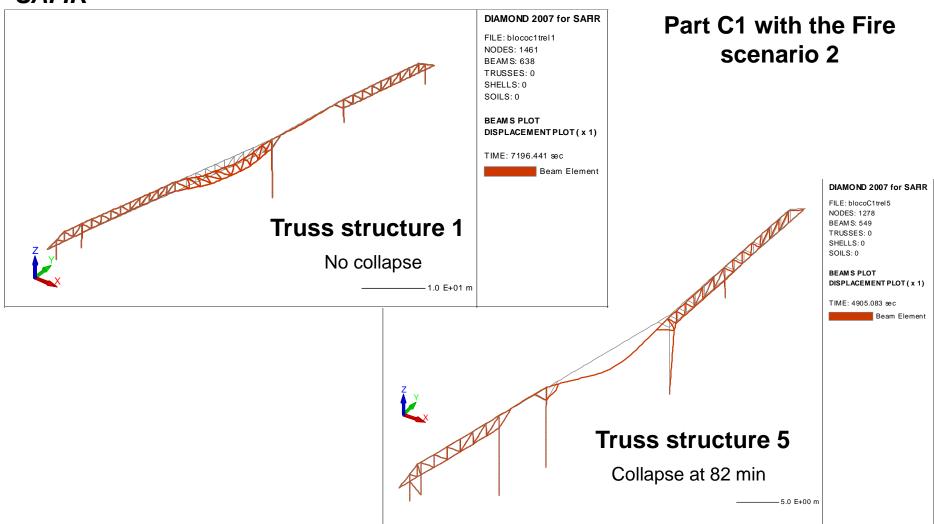

Truss structure 4

Collapse at 71 min

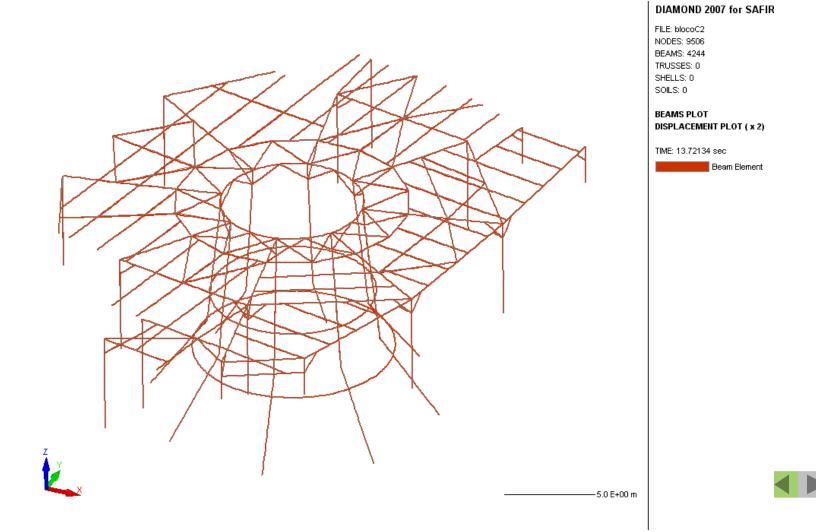
Truss structure 3

Collapse at 65 min

Truss structure 2

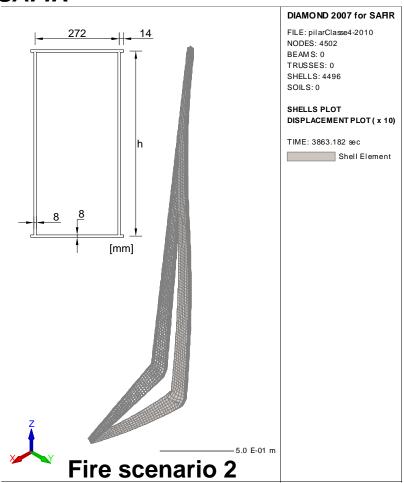

Collapse at 87 min

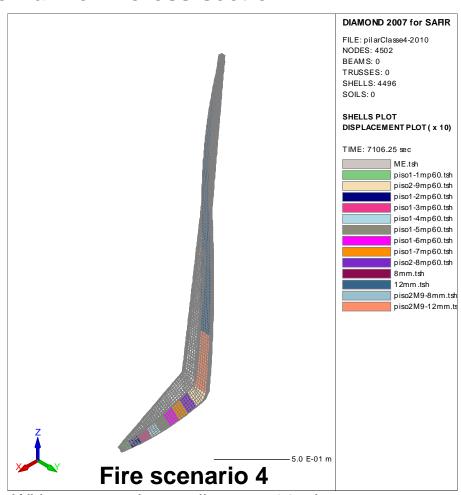
SAFIR



SAFIR

Frame of Part C2 with the Fire scenario 2

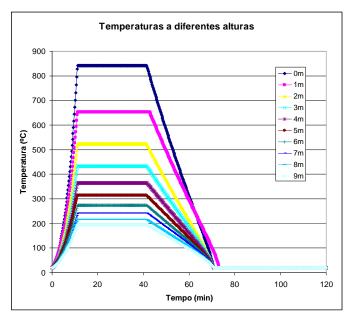


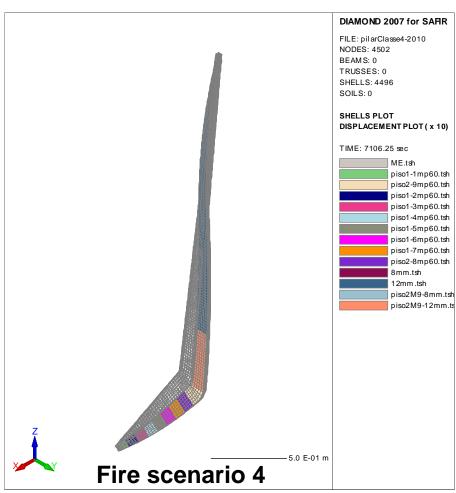


SAFIR

Class 4 collumn with non-uniform cross-section

Collapse at 64 min


Without protection - collapse at 14 min With protection of R60 (500°C) in the first 9 m height - no collapse

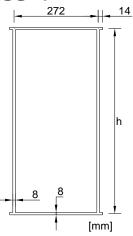


Class 4 collumn with non-uniform cross-section

Program Elefir-EN

Localised fire

Without protection - collapse at 14 min With protection of R60 (500°C) in the first 9 m height - no collapse



Class 4 collumn with non-uniform cross-section

Collapse at 64 min

Built up Box cross-section of class 4

Note: In a prescriptive approach and without making any calculation, this structure should have been protected for a critical temperature of 350°C and for R60

Parts of the structure / fire scenarios	Result
Part D1 without protection under fire scenario 1	t _{collapse} = 53 min
Part D1 with protection in the purlins of R30 under fire scenario 1	No collapse
Frame of part D2 under fire scenario 2	t _{collapse} = 78 min
Truss structure 1 of part D2 under fire scenario 2	t _{collapse} = 70 min
Truss structure 2 of part D2 under fire scenario 2	t _{collapse} = 77 min
Beam of part D2 under fire scenario 2	No collapse
Truss structure 1 of part C1 under fire scenario 2	No collapse
Truss structure 2 of part C1 under fire scenario 2	t _{collapse} = 87 min
Truss structure 3 of part C1 under fire scenario 2	t _{collapse} = 65 min
Truss structure 4 of part C1 under fire scenario 2	t _{collapse} = 71 min
Truss structure 5 of part C1 under fire scenario 2	t _{collapse} = 82 min
Frame of part C2 under fire scenario 2	No collapse
Collumn with non-uniform cross-section without protection under fire scenario 2	t _{collapse} = 64 min
Collumn with non-uniform cross-section without protection under fire scenario 4	t _{collapse} = 14 min
Collumn with non-uniform cross-section with protection of R60 in the first 9 m height under fire scenario 4	No collapse

- [200
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	
- 1	

References

- Fire Design of Steel Structures, Jean-Marc Franssen and Paulo Vila Real (2010) ECCS ed and Ernst & Sohn a Wiley Company ed. www.steelconstruct.com.
- Elefir-EN V1.2.2 (2010), Paulo Vila Real and Jean-Marc Franssen, http://elefiren.web.ua.pt.
- The ESDEP (1995), (European Steel Design Education Programme) Society, The Steel Construction Institute.
- DIFISEK + (2008), Dissemination of Fire Safety Engineering Knowledge +.
- Ozone V2.2.6, (2009), http://www.arcelormittal.com/sections/.
- SAFIR A Thermal/Structural Program Modeling Structures under Fire, Jean-Marc Franssen, http://www.s2v.be/portfolio/safir/.
- Vila Real, P. M. M.; Lopes, N. "Shopping Centre Dolce Vita em Braga, Portugal", to Martifer, S.A., LERF Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.
- Vila Real, P. M. M.; Lopes, N. "Barreiro Reatail Park, Portugal", to Martifer, S.A., LERF Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.
- Vila Real, P. M. M.; Lopes, N. "Shopping Centre Oeiras, Portugal", to Martifer, S.A., LERF Laboratório de Estruturas e Resistência ao Fogo, Universidade de Aveiro, Junho de 2009.

Thank you for your attention

pvreal@ua.pt