Introduction to Fire Dynamics for Structural Engineers

by Dr Guillermo Rein

School *of* **Engineering University** *of* **Edinburgh**

Training School for Young Researchers COST TU0904, Malta, April 2012

Textbooks

Introduction to fire Dynamics by Dougal Drysdale, 3rd Edition, Wiley 2011

The SFPE Handbook of Fire protection Engineering, 4th Edition, 2009

Principles of Fire Behavior by James G. Quintiere

~£46

Fire Safety: protect Lives, Property and Business

from Physical Parameters Affecting Fire Growth, Torero and Rein, CRCpress

Boundary at 256s

Discipline Boundaries

Lame Substitution of 1st kind

Lame Substitution of 2nd kind

Lame Substitution of 3rd kind

Ignition – fuel exposed to heat

- Material start to decompose giving off gasses: pyrolysis
- Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Before ignition

After 5 minutes

After 15 minutes

Pyrolysis video

Iris Chang and Frances Radford, 2011 MEng project

Time to ignition

Experimental data for PMMA (polymer) from the literature. Thick samples

Flammability

Ignition Data from ASIM E-1321 per Quintière					
Material	<i>T</i> _{ig} [°C]	<i>k</i> ρC [(kW/m² K)² s]			
Wood fiber board	355	0.46			
Wood hardboard	365	0.88			
Plywood	390	0.54			
PMMA	380	1.00			
Flexible foam plastic	390	0.32			
Rigid foam plastic	435	0.03			
Acrylic carpet	300	0.42			
Wallpaper on plasterboard	412	0.57			
Asphalt shingle	378	0.70			
Glass-reinforced plastic	390	0.32			

... C ACTLA E 1001 0 . . .

Source: Quintiere, J.G., Principles of Fire Behavior, Delmar Publishers, New York, 1998.

Video from WPI (USA)

Effect of heat Release Rate on Flame height

http://www.youtube.com/watch?v=7B9-bZCCUxU&feature=player_embedded

Burning rate (per unit area)

Table 9.3 Asymptotic burning rates (from various sources) g/m²s Polyvinyl chloride (granular) 16 21 Methanol Flexible polyurethane (foams) 21-27 28 Polymethymethacrylate 38 Polystyrene (granular) Acetone 40 Gasolene 48-62 JP-4 52 - 70Heptane 66 Hexane 70 - 80Butane 80 Benzene 98 Liquid natural gas 80-100 Liquid propane 100 - 130

Ŕ

from Quintiere, Principles of Fire Behaviour

 $\dot{m}'' = rac{q}{\Delta h_p}$

Firepower – Heat Release Rate

Heat release rate (HRR) is the power of the fire (energy release per unit time)

$$\dot{Q} = \Delta h_c \dot{m} = \Delta h_c \dot{m}'' A$$

Note: the heat of reaction is negative for exothermic reaction, but in combustion this is always the case, so we will drop the sign from the heat of combustion for the sake of simplicity

Heat of Combustion

		$-\Delta H_{c}$	$-\Delta H_{c}$	$-\Delta H_{c,air}$	$-\Delta H_{c.ox}$
		(KJ/mol)	(KJ/g)	(KJ/g(air))	(KJ/g(U ₂))
Carbon monoxide	CO	283	10.10	4.10	17.69
Methane	CH₄	800	50.00	2.91	12.54
Ethane	C_2H_6	1423	47.45	2.96	11.21
Ethene	C_2H_4	1411	50.35	3.42	14.74
Ethyne	C_2H_2	1253	48.20	3.65	15.73
Propane	C_3H_8	2044	46.45	2.97	12.80
n-Butane	n-C4H10	2650	45.69	2.97	12.80
n-Pentane	$n-C_5H_{12}$	3259	45.27	2.97	12.80
n-Octane	$n - C_8 H_{18}$	5104	44.77	2.97	12.80
c-Hexane	c-C6H12	3680	43.81	2.97	12.80
Benzene	C ₆ H ₆	3120	40.00	3.03	13.06
Methanol	CH ₃ OH	635	19.83	3.07	13.22
Ethanol	C ₂ H ₅ OH	1232	26.78	2.99	12.88
Acetone	(CH ₃) ₂ CO	1786	30.79	3.25	14.00
D-Glucose	C6H12O6	2772	15.4	3.08	13.27
Cellulose		_	16.09	3.15	13,59
Polyethylene		_	43.28	2.93	12.65
Polypropylene		_	43.31	2.94	12.66
Polystyrene		_	39.85	3.01	12.97
Polyvinylchloride		_	16.43	2.98	12.84
Polymethylmethacrylate		_	24.89	3.01	12.98
Polyacrylonitrile		_	30.80	3,16	13.61
Polyoxymethylene		_	15.46	3.36	14.50
Polyethyleneterephthalate		_	22.00	3.06	13.21
Polycarbonate		_	29.72	3.04	13.12
Nylon 6,6		_	29.58	2.94	12.67

Table 1.13 Heats of combustion^a of selected fuels at 25°C (298 K)

^{*a*} The initial states of the fuels correspond to their natural states at normal temperature and pressure (298°C and I atm pressure). All products are taken to be in their gaseous state—thus these are the net heats of combustion.

 $\dot{\mathbf{Q}} = \Delta h_c \dot{m}'' \mathbf{A}$

Burn-out and travelling flames

b)

Flame Spread vs. Angle

Rate of flame spread over strips of thin samples of balsa wood at different angles of 15, 90, -15 and 0°. Test conducted by Aled Beswick BEng 2009

http://www.youtube.com/watch?v=V8gcFX9jLGc

Flame spread

> On a uniform layer of fuel ignited, spread is circular

 $\frac{dR}{dt} = S = \text{flame spread rate}$ if S = constant $\Rightarrow R = St$ $A = \pi R^2 = \pi (St)^2$ $\dot{Q} = \Delta h_c \dot{m}'' A = \pi \Delta h_c \dot{m}'' S^2 t^2$

~material properties

$$\dot{Q} = \pi \Delta h_c \dot{m}'' S^2 t^2 = \alpha t^2$$

if flame spread is ~constant, the fire grows as t^2

t-square growth fires

Tabulated fire-growths of different fire types

$$\dot{Q} = \alpha t^2$$

Table 9.6 Parameters used for 't-squared fires' (Evans, 1995)

Description	Typical scenario	$\alpha_{\rm f}$ kW/s ²
Slow	Densely packed paper products ^a	0.00293
Medium	Traditional mattress/boxspring ^e Traditional armchair	0.01172
Fast	PU mattress (horizontal) ^a PE pallets, stacked 1 m high	0.0469
Ultrafast	High-rack storage PE rigid foam stacked 5 m high	0.1876

^a National Fire Protection Association (1993a).

Fire Test at BRE commissioned by Arup 2009 4x4x2.4m – small premise in shopping mall

Αŀ

190s

285s

316s

\$

Free burning vs. Confined burning

Smoke and walls radiate downwards to fuel items in the compartments

Sudden and generalized ignition (*flashover*)

What is flashover?

Sudden period of very rapid growth caused by generalized ignition of fuel items in the room.

Some indicators:

- Average smoke temperature of ~500-600 °C
- Heat flux ~20 kW/m² at floor level
- Flames out of openings (ventilation controlled)

NOTE: These three are *not* definitions but indicators only

Flashover

Mechanism for flashover:

Fire produces a plume of **hot smoke**Hot smoke layer **accumulates** under the ceiling
Hot smoke and heated surfaces **radiate downwards**Flame spread rate and rate of secondary ignition increases
Rate of burning increases
Firepower larger and smoke hotter
Firepower larger and smoke hotter

Compartment fires

Fire development in a compartment - rate of heat release as a function of time

Discipline Boundaries

$GI \Rightarrow GO$

If the input is incomplete/flawed, the subsequent analysis is flawed and cannot be trusted for design

Fire is the input (boundary condition) to subsequent structures analysis

Design Fires

"The Titanic complied with all codes. Lawyers can make any device legal, only engineers can make them safe" Prof VM Brannigan University of Maryland

Traditional Design Fires

- Standard Fire ~1917
- ➢ Swedish Curves ~1972
- Eurocode Parametric Curve ~1995

Traditional Methods

- Traditional methods are based on experiments conducted in **small compartment** experiments (~3 m³)
 - 1. Traditional methods assume **uniform fires** that lead to uniform fire temperatures (?)
 - 2. Traditional methods have been said to be **conservative** (?)

Limitations

For example, limitations according Eurocode:

% Near rectangular enclosures
% Floor areas < 500 m²
% Heights < 4 m
% No ceilings openings
% Only medium thermal-inertia lining

< 500 m2 floor? <4 m high?

Excel, London

Rectangular?

Proposed WTC Transit Hub

Insulating lining?

Shard

No ceiling opening?

Arup Campus

Edinburgh Survey 3,080 compartments

- > 1850-1990 buildings: **66%** of volume within limitations
- ➢ 2008 building: 8%

Modern architecture increasingly produces buildings out of range

Traditional Methods

- Traditional methods are based on experiments conducted in **small compartment** experiments (~3 m³)
 - 1. Traditional methods assume **uniform fires** that lead to uniform fire temperatures (?)
 - 2. Traditional methods have been said to be **conservative** (?)

Fuel Load

>Mixed livingroom/office space
>Fuel load is ~ 32 kg/m²
>Set-up Design for robustness and high repeatability

Compartment Temperature

Fig. 6. Comparisons of the measured temperature distributions against the associated normal distributions at 4 min intervals after flashover for Dalmarnock Test One.

Stern-Gottfried et al., Fire Safety Journal 45, pp. 249–261, 2010. doi:10.1016/j.firesaf.2010.03.007

Cardington Results

Temperature Distributions

Test	Min σ	Mean	Max σ	Max T _{avg}
	(°C)	σ (°C)	(°C)	(°C)
Dalmarnock Test One	105	132	233	733
Cardington 1	38	84	136	857
Cardington 2	31	83	153	1075
Cardington 3	31	100	208	1103
Cardington 4	31	52	93	1199
Cardington 5	18	56	135	1147
Cardington 6	25	44	129	1218
Cardington 7	20	51	159	1200
Cardington 8	32	83	213	1107
Standard Fire Tests	8	12	39	N/A

- Peak local temperatures range from 23% to 75% above compartment average, with a mean of 38%
- Local minimum temperatures range from 29% to 99% below compartment average, with a mean of 49%

Travelling Fires

Real fires have been observed to travel
 #WTC Towers 2001
 Torre Windsor 2005
 Delft Faculty 2008

Experimental data indicate fires travel in large compartments

In larger compartments, the fire does not burn uniformly but burns locally and spreads

Design Fires

"Problems cannot be solved by the level of awareness that created them"

Attributed to A Einstein

Travelling Fires

Travelling Fires

Each structural element sees a combination of Near Field and Far Field temperatures as the fire travels

$Example - 25\% \ Floor \ Area \ fire \ in \ a \ 1000 \ m^2$

Near field temperature 1200°C for 19 min
 Far field temperature ~ 800°C for 76 min

Structural Results – Rebar Temperature

Case Study: Generic Multi-Storey Concrete Structure

Stern-Gottfried et al, SPFE PBD, 2010, Lund

Law et al, *Engineering Structures* 2011

Rebar Temperature

• Using a 3D Finite Element Model

Max Rebar Temperatures vs. Fire Size

Law et al, *Engineering Structures* 2011

Max Deflection vs. Fire Size

Conclusions

- In large compartments, a post flashover fire is not likely to occur, but a travelling fire
- Provides range of possible fire dynamics
- Novel framework complementing traditional methods
- Travelling fires give more onerous conditions for the structure
- Strengthens collaboration between fire and structural fire engineers

Sponsors:

The Leverhulme Trust

J Stern-Gottfried A Law A Jonsdottir M Gillie J Torero

Thanks

Collaborators:

Law et al, Engineering Structures 2011

Jonsdottir et al, Interflam 2010, Nottingham

Stern-Gottfried et al, SPFE PBD, 2010, Lund

Stern-Gottfried et al, Fire Risk Management 2009

Jonsdottir et al, *Fire Risk Management* 2009

Rein et al, *Interflam* 2007, London

Strengthening the bridges

Temperature of the plume

Figure 4.22 Variation of centreline temperature rise with height in a buoyant methane diffusion flame. Scales as $z/\dot{Q}_c^{2/5}$ (Table 4.2) (McCaffrey (1979), by permission). A similar correlation has been demonstrated for a range of hydrocarbon pool fires by Kung and Stavrianides (1982)

Conservation of Mass – burning time

Burning at average heat release per unit area

$$t_b = \frac{m'' \Delta h_c}{\dot{Q}''}$$

50 MW fire on 200 m^2 burns for 30 **min**

\mathfrak{H} 50 MW fire on 1000 m² burns for 15 **min**

where t_b is the burning time, *m*" is the fuel load density (kg/m²), ΔH_c is the effective heat of combustion and Q" is the heat release rate per unit area (MW/m²)

Rein et al, Interflam 2007, London

Aftermath

Average Compartment Temperature

Three different beams used

Example: Cardington

Unprotected Steel

Protected Steel

Results for Insulated Steel: Parametric vs. Travelling fires Jonsdottir et al, Interflam 2010, Nottingham 2,2 T_{max}-method/T_{max}-parametric curve 300mm 2.0 200mn 1.8 290mm 1.6 HE-A 600 HE-A 300 HE-A 200 1.4 -HE-A 600 HE-A 300 1.2 1.0 0.8 0.6 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentages of floor area

Compared to parametric fire, 110% higher temperatures for a protected steel with 39 mm-gypsum

Structural Behaviour

Fire Progression

Sudden

Gradual

Fire Shape/Path

Far Field Temperature Discretization

Sensitivity Results

- Unprotected steel up to 10% higher steel temperature (independent of fire size)
- Protected steel from 65%-95% higher steel temperature
 #Maximum over prediction (110%) at fire areas of 5-10%
 #Maximum under prediction (20%) at fire areas over
 - 85%

The case study

The above methodology was applied to a real building, The Informatics Forum Building of the University of

Edinburgh

Results

 T_{max} -method / T_{max} -parametric curve - for unprotected steel:

percentages of floor area

Heron Tower

- 46 Storey Office Building in City of London
- 3-storey atriums forming 'villages'
- First ever project to consider the robustness of a structure in a multistorey fire.

Heron Tower

Sudden and generalized ignition (*flashover*)

➤ When feedback heat flux is ~20 kW/m² (above the critical ignition for most known fuels) enhanced flame spread and fast secondary ignition take places in the compartment → onset of flashover

Technological Disasters 1900-2000

NOTE: Immediate fatalities as a proxy to overall damage. Disaster defined as >10 fatalities, >100 people affected, state of emergency or call for international assistance.

EM-DAT International Disaster Database, Université catholique de Louvain, Belgium. www.emdat.be

Jocelyn Hofman, Fire Safety Engineering in Coal Mines MSc Dissertation, University of Edinburgh, 2010

Technological Disasters 1900-2000 Fire and Explosions

Buoyancy

Candle burning on Earth (1g) and in microgravity inside the ISS (~0g)

Family of possible fires

Stern-Gottfried et al, SPFE PBD, 2010, Lund

Far Field Temperature

Maximum temperature at ceiling jet. Average calculated over the correlation with the distance from the fire (Alpert's correlation)

Products of Combustion

Mass flow of combustion products at the flame:

(Atmospheric air is 21% Oxygen, MW_{air}=29 g/mol)

Flow of products of combustion $\dot{m}_{pc} = \dot{m} + \dot{m}_{st,air} = \dot{m} \left(1 + \frac{MW_{air}}{MW_{fuel}} \frac{x + y/4}{0.21} \right) \sim \dot{m} (1 + 16)$ fuel flow rate by pyrolysis flow of stoichiometric air eg, value for propane

$$\dot{m}_{ent} >> \dot{m}_{pc} \Rightarrow \dot{m}_{smoke} = \dot{m}_{pc} + \dot{m}_{ent} \approx \dot{m}_{ent}$$

Smoke is mostly made of entrained air
Most of the smoke is N₂!

Ventilation flows

Flows in and out of the compartment are controlled by buoyancy which scales with the density differences and the size of the opening.

$$\rho v^2 = \Delta \rho g H_0$$
 for buoyant flows

$$\dot{m} = vA_0 \Longrightarrow \dot{m} \propto A_0 \sqrt{H_0}$$

$$\dot{m}_{a,\max} = 0.5A_0\sqrt{H_0}$$

 $\dot{m}_{a,\max} \ge \dot{m}_a$

ventilation factor

- \dot{m}_{σ} Mass flow of air into compartment (kg/s)
- A_o Opening area (m²)
- H_o Height of opening (m)

- The flow through openings has a maximum possible limit.
- •At steady state, flow of smoke out is approximately equal to the flow of air in.

Pyrolysis

Figure 1.3 Different modes in which fuel vapour is generated from a solid (Table 1.3)

When a solid material heats up, it eventually reaches a temperature threshold where it begins to chemically break down. This process is called pyrolysis and is similar to gasification but with one key difference – pyrolysis is the simultaneous change of chemical composition (eg, long hydrocarbon chains to shorter chains) and physical phase (ie, solid or liquid to vapour) and is irreversible. When a solid is burning with a flame, it is actually the pyrolysis vapours (aka *pyrolyzate*) directly above it that is burning, not the solid itself.

Flame Spread – rate of area growth

1

Flame spread is inversely

proportional to the time to

ignition

$$\dot{F}_{ig} = \frac{\pi}{4} k \rho c \left(\frac{T_{ig} - T_o}{\dot{q}''_e} \right)^2$$

Ignition – fuel exposed to heat

- Material start to decompose giving off gasses: pyrolysis
- Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Flame Spread vs. Angle

120.00 10.00 00.00 90.00 80.00 Rate of Propagation (mm/s) 70.00 60.00 Repeat 1 50.00 Repeat 2 40.00 30.00 20.00 10.00 downward upward -90 -80 70 80 90 -70 -60 -50 -30 -20 0 10 20 30 40 50 60 40 vertical vertical Angle (degrees) spread spread

A graph to show the rate of flame spread over balsa at angles between -90 and 90 degrees

Upward spread up to 20 times faster than downward spread

Examples of HRR

workstation

Heat Release Rate (kW)

mattress

wood crib

:00: Time (s) 1000 150 Time (s) 200 400 600 800 1000 1200 1400 Time (s) -200 -200 0

Under Ventilated fires and External flaming

0:00 min 4:15 min 5:00 min Polypropylene: burning inside a small compartment (0.4m cube)

Ceiling Jet

Figure 2-2.1. Ceiling jet flow beneath an unconfined ceiling.

Size Matters

Surface Area to Volume Ratio vs Floor Area for a 3m High Square Compartment

Encouraging initial reactions to this work

- ➤ Abstract submitted in 2007 to Structures in Fire (SiF)
- Title: "ON THE STRUCTURAL DESIGN FIRES FOR VERY LARGE ENCLOSURES"
- > Reviewer #1: This abstract does not it fit with [conference] theme.
- Reviewer #2: This paper is outside the scope of the conference
- Reviewer #3: The authors are encouraged to submit their paper somewhere else
- Abstract submitted in 2011 to Structures in Fire (SiF)
- Title: "TRAVELLING FIRES IN LARGE COMPARTMENTS: MOST SEVERE POSSIBLE SCENARIOS FOR STRUCTURAL DESIGN"
- Reviewer 1: Several works has been done and published
- Reviewer 2: No significant input
- Reviewer 3: Authors must provide examples for typical case studies

Thanks

