Introduction to Fire Dynamics for Structural Engineers

by Dr Guillermo Rein

School of Engineering University of Edinburgh

Training School for Young Researchers COST TU0904, Malta, April 2012

Textbooks

Introduction to fire Dynamics by Dougal Drysdale, $3{ }^{\text {rd }}$ Edition, Wiley 2011

The SFPE Handbook of Fire protection Engineering, 4th Edition, 2009

Principles of Fire Behavior by James G. Quintiere

Fire Safety: protect Lives, Property and Business

Fire Service/Sprinkler

Boundary at 256s

breUP

Discipline Boundaries

Fire \&

Lame Substitution of $1^{\text {st }}$ kind

Fire \&

Lame Substitution of $2^{\text {nd }}$ kind

Lame Substitution of $3^{\text {rd }}$ kind

Ignition - fuel exposed to heat

> Material start to decompose giving off gasses: pyrolysis
> Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Before ignition

After 5 minutes

After 15 minutes

Pyrolysis video

Iris Chang and Frances Radford, 2011 MEng project

Time to ignition

Experimental data for PMMA (polymer) from the literature. Thick samples

Flammability

Ignition Data from ASTM E-1321 per Quintiere

Material	365	0.46
Wood fiber board	390	0.88
Wood hardboard	380	0.54
Plywood	390	1.00
PMMA	435	0.32
Flexible foam plastic	300	0.03
Rigid foam plastic	412	0.42
Acrylic carpet	378	0.57
Wallpaper on plasterboard	390	0.70
Asphalt shingle	0.32	

Source: Quintiere, J.G., Principles of Fire Behavior, Delmar Publishers, New York, 1998.

Video from WPI (USA)

Effect of heat Release Rate on Flame height

http://www.youtube.com/watch?v=7B9-bZCCUxU\&feature=player_embedded

Burning rate (per unit area)

Table 9.3 Asymptotic burning rates (from various sources)

	$\mathrm{g} / \mathrm{m}^{2} \mathrm{~s}$
Polyvinyl chloride (granular)	16
. Methanol.....................	
Plexible polyurethane (foams)	$21-27$
Polymethymethacrylate	28
Polystyrene (granular)	38
Gasolene	48-62
JP-4	52-70
Heptane	66
Hexane	70-80
Butane	80
Benzene	98
Liquid natural gas	80-100
Liquid propane	100-130

from Quintiere, Principles of Fire Behaviour

$$
\dot{m}^{\prime \prime}=\frac{\dot{q}^{\prime \prime}}{\Delta h_{p}}
$$

Firepower - Heat Release Rate

$>$ Heat release rate $(H R R)$ is the power of the fire (energy release per unit time)

$$
\dot{Q}=\Delta h_{c} \dot{m}=\Delta h_{c} \dot{m}^{\prime \prime} A
$$

1. | \dot{Q} | Heat Release Rate $(\mathrm{kW}) \quad$ - evolves with time |
| :--- | :--- |
| Δh_{c} | Heat of combustion (kJ/kg-fuel) ~ constant |
2. $\begin{cases}\dot{m} & \text { Burning rate }(\mathrm{kg} / \mathrm{s}) \text { - evolves with time } \\
\dot{m}^{\prime \prime} & \text { Burning rate per unit area }\left(\mathrm{m}^{2}\right) \sim \text { constant } \\
\text { 3. } & \text { B }\end{cases}$

Heat of Combustion

		$-\Delta H_{\mathrm{c}}$ (kJ/mol)	$\begin{gathered} -\Delta H_{\mathrm{c}} \\ (\mathrm{k} / \mathrm{g}) \end{gathered}$	$\begin{gathered} -\Delta H_{\text {c.air }} \\ (\mathbf{k} \mathrm{J} / \mathrm{g}(\mathrm{air})) \end{gathered}$	$\begin{gathered} -\Delta H_{\text {c.0x }} \\ \left(\mathbf{k} \mathrm{J} / \mathrm{g}\left(\mathrm{O}_{2}\right)\right) \end{gathered}$
Carbon monoxide	CO	283	10.10	4.10	17.69
Methane	CH_{4}	800	50.00	2.91	12.54
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	1423	47.45	2.96	11.21
Ethene	$\mathrm{C}_{2} \mathrm{H}_{4}$	1411	50.35	3.42	14.74
Ethyne	$\mathrm{C}_{2} \mathrm{H}_{2}$	1253	48.20	3.65	15.73
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}$	2044	46.45	2.97	12.80
n-Butane	$n-\mathrm{C}_{4} \mathrm{H}_{10}$	2650	45.69	2.97	12.80
n-Pentane	$n-\mathrm{C}_{5} \mathrm{H}_{12}$	3259	45.27	2.97	12.80
n-Octane	$n-\mathrm{C}_{8} \mathrm{H}_{18}$	5104	44.77	2.97	12.80
c-Hexane	$c-\mathrm{C}_{6} \mathrm{H}_{12}$	3680	43.81	2.97	12.80
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	3120	40.00	3.03	13.06
Methanol	$\mathrm{CH}_{3} \mathrm{OH}$	635	19.83	3.07	13.22
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1232	26.78	2.99	12.88
Acetone	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	1786	30.79	3.25	14.00
D-Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	2772	15.4	3.08	13.27
Cellulose		-	16.09	3.15	13.59
Polyethylene		-	43.28	2.93	12.65
Polypropylene		-	43.31	2.94	12.66
Polystyrene		-	39.85	3.01	12.97
Polyvinylchloride		-	16.43	2.98	12.84
Polymethylmethacrylate		-	24.89	3.01	12.98
Polyacrylonitrile		-	30.80	3.16	13.61
Polyoxymethylene		-	15.46	3.36	14.50
Polyethyleneterephthalate		-	22.00	3.06	13.21
Polycarbonate		-	29.72	3.04	13.12
Nylon 6,6		-	29.58	2.94	12.67

${ }^{a}$ The initial states of the fuels correspond to their natural states at normal temperature and pressure ($298^{\circ} \mathrm{C}$ and I atm pressure). All products are taken to be in their gaseous state-thus these are the net heats of combustion.

$$
\dot{Q}=\Delta h_{c} \dot{m}^{\prime \prime} A
$$

Burn-out and travelling flames

b)

Flame Spread vs. Angle

Rate of flame spread over strips of thin samples of balsa wood at different angles of $15,90,-15$ and 0°.
Test conducted by Aled Beswick BEng 2009
http://www.youtube.com/watch?v=V8gcFX9jLGc

Flame spread

$>$ On a uniform layer of fuel ignited, spread is circular

$$
\begin{aligned}
& \frac{d R}{d t}=S=\text { flame spread rate } \\
& \text { if } \mathrm{S}=\text { constant } \Rightarrow R=S t \\
& A=\pi R^{2}=\pi(S t)^{2} \\
& \dot{Q}=\Delta h_{c} \dot{m}^{\prime \prime} A=\pi \Delta h_{c} \dot{m}^{\prime \prime} S^{2} t^{2}
\end{aligned}
$$

$$
\dot{Q}=\pi \Delta h_{c} \dot{m}^{\prime \prime} S^{2} t^{2}=\alpha t^{2}
$$

if flame spread is \sim constant, the fire grows as t^{2}

t-square growth fires

$>$ Tabulated fire-growths of different fire types

$$
\dot{Q}=\alpha t^{2}
$$

Table 9.6 Parameters used for ' t-squared fires' (Evans, 1995)

Description	Typical scenario	α_{f} $\mathrm{~kW} / \mathrm{s}^{2}$
Slow	Densely packed paper products ${ }^{a}$ MediumTraditional mattress/boxspring ${ }^{e}$ Traditional armchair	0.00293
Fast	PU mattress (horizontal) ${ }^{a}$	0.01172
Ultrafast	PE pallets, stacked 1 m high High-rack storage	0.0469
	PE rigid foam stacked 5 m high	

${ }^{a}$ National Fire Protection Association (1993a).

Sofa fire

from NIST http://fire.nist.gov/fire/fires

Fire Test at BRE commissioned by Arup 2009 $4 \times 4 \times 2.4 \mathrm{~m}-$ small premise in shopping mall

190s

285s

316s

Fire Test at BRE commissioned by Arup 2009

bre
ARUP

Free burning vs. Confined burning

$$
\dot{m}^{\prime \prime}=\frac{\dot{q}^{\prime \prime}}{\Delta h_{p}}
$$

Smoke and walls radiate downwards to fuel items in the compartments

Sudden and generalized ignition (flashover)

What is flashover?
Sudden period of very rapid growth caused by generalized ignition of fuel items in the room.

Some indicators:

- Average smoke temperature of $\sim 500-600{ }^{\circ} \mathrm{C}$
- Heat flux $\sim 20 \mathrm{~kW} / \mathrm{m}^{2}$ at floor level
- Flames out of openings (ventilation controlled)

NOTE: These three are not definitions but indicators only

Flashover

Mechanism for flashover:

Fire produces a plume of hot smoke
Hot smoke layer accumulates under the ceiling
Hot smoke and heated surfaces radiate downwards
Flame spread rate and rate of secondary ignition increases
Rate of burning increases
Firepower larger and smoke hotter

> Feedback loop

Compartment fires

Fire development in a compartment - rate of heat release as a function of time

(a) growth period
(b) fully developed fire
(c) decay period

Discipline Boundaries

Fire \&

$\mathbf{G I} \Rightarrow \mathbf{G O}$

$>$ If the input is incomplete/flawed, the subsequent analysis is flawed and cannot be trusted for design
$>$ Fire is the input (boundary condition) to subsequent structures analysis

Design Fires

"The Titanic complied with all codes.
Lawyers can make any device legal, only engineers can make them safe"

Prof VM Brannigan
University of Maryland

Traditional Design Fires

> Standard Fire ~1917
> Swedish Curves ~1972
> Eurocode Parametric Curve ~1995

Traditional Methods

$>$ Traditional methods are based on experiments conducted in small compartment experiments ($\sim 3 \mathrm{~m}^{3}$)

1. Traditional methods assume uniform fires that lead to uniform fire temperatures (?)
2. Traditional methods have been said to be conservative (?)

Limitations

For example, limitations according Eurocode:

If Near rectangular enclosures
\& Floor areas < $\mathbf{5 0 0} \mathbf{~ m}^{\mathbf{2}}$
\& Heights $<4 \mathrm{~m}$
\& No ceilings openings
\mathscr{H} Only medium thermal-inertia lining

< 500 m 2 floor?
 $<4 \mathrm{~m}$ high?

Excel, London

Rectangular?

Proposed WTC Transit Hub

Insulating lining?

Shard

No ceiling opening?

Arup Campus

Edinburgh Survey 3,080 compartments

> 1850-1990 buildings: $\mathbf{6 6 \%}$ of volume within limitations
> 2008 building: $\mathbf{8 \%}$
Modern architecture increasingly produces buildings out of range

Jonsdottir et al
FireRisk M anagement 2009

Traditional Methods

$>$ Traditional methods are based on experiments conducted in small compartment experiments ($\sim 3 \mathrm{~m}^{3}$)

1. Traditional methods assume uniform fires that lead to uniform fire temperatures (?)
2. Traditional methods have been said to be conservative (?)

Fuel Load

$>$ Mixed livingroom/ office space
\Rightarrow Fuel load is $\sim 32 \mathrm{~kg} / \mathrm{m}^{2}$
Set-up Design for robustness and high repeatability

Compartment Temperature

Fig. 6. Comparisons of the measured temperature distributions against the associated normal distributions at 4 min intervals after flashover for Dalmarnock Test One.

Stern-Gottfried et al., Fire Safety Journal 45, pp. 249-261, 2010. doi:10.1016/ j.firesaf.2010.03.007

Cardington Results

Temperature Distributions

Test	Min σ $\left({ }^{\circ} \mathbf{C}\right)$	Mean σ $\left({ }^{\circ} \mathbf{C}\right)$	Max σ $\left({ }^{\circ} \mathbf{C}\right)$	Max T $\left({ }^{\circ} \mathbf{C a g}\right)$
Dalmarnock Test One	105	132	233	733
Cardington 1	38	84	136	857
Cardington 2	31	83	153	1075
Cardington 3	31	100	208	1103
Cardington 4	31	52	93	1199
Cardington 5	18	56	135	1147
Cardington 6	25	44	129	1218
Cardington 7	20	51	159	1200
Cardington 8	32	83	213	1107
Standard Fire Tests	8	12	39	N/A

> Peak local temperatures range from 23\% to 75\% above compartment average, with a mean of 38%
$>$ Local minimum temperatures range from 29\% to 99\% below compartment average, with a mean of 49%

Travelling Fires

$>$ Real fires have been observed to travel \& WTC Towers 2001
\& Torre Windsor 2005
\& Delft Faculty 2008
$>$ Experimental data indicate fires travel in large compartments

$>$ In larger compartments, the fire does not burn uniformly but burns locally and spreads

Design Fires

"Problems cannot be solved by the level of awareness that created them"

Attributed to A Einstein

Travelling Fires

Fire environment split into two:

Near-field $\approx 1000-1200{ }^{\circ} \mathrm{C}$
Far-field $\approx 200-1200{ }^{\circ} \mathrm{C}$ (Alper's comelation)

Total burning duration is a function of the area of the fire

Travelling Fires

> Each structural element sees a combination of Near Field and Far Field temperatures as the fire travels

Stern-Gottfried et al, SPFE PBD, 2010, Lund

Example - 25\% Floor Area fire in a $1000 \mathbf{m}^{\mathbf{2}}$

$>$ Near field temperature $1200^{\circ} \mathrm{C}$ for 19 min
$>$ Far field temperature $\sim 800^{\circ} \mathrm{C}$ for 76 min

Structural Results - Rebar Temperature

Case Study:
 Generic Multi-Storey Concrete Structure

Stern-Gottfried et al, SPFE PBD, 2010, Lund
Law et al, Engineering Structures 2011

Rebar Temperature

- Using a 3D Finite Element Model

- 100\% burn area

Rebar Temperature

....... 50\% burn area

- 100\% burn area

Rebar Temperature

- - . 25\% burn area
....... 50\% burn area
- 100\% burn area

Rebar Temperature

........ 10\% burn area

- - $\quad 25 \%$ burn area
....... 50\% burn area
- 100\% burn area

Rebar Temperature

$$
\begin{array}{cc}
& 5 \% \text { burn area } \\
\ldots \ldots . . & \text { 10\% burn area } \\
-- & 25 \% \text { burn area } \\
\ldots . & 50 \% \text { burn area } \\
- & \mathbf{1 0 0 \%} \text { burn area }
\end{array}
$$

Rebar Temperature

- $\quad 2.5 \%$ burn area
- 5% burn area
........ 10\% burn area
- - 25% burn area
........ 50\% burn area
- $\mathbf{1 0 0 \%}$ burn area

Law et al, Engineering Structures 2011

Max Rebar Temperatures vs. Fire Size

Law et al, Engineering Structures 2011

Max Deflection vs. Fire Size

Law et al, Engineering Structures 2011

Conclusions

> In large compartments, a post flashover fire is not likely to occur, but a travelling fire
$>$ Provides range of possible fire dynamics
$>$ Novel framework complementing traditional methods
$>$ Travelling fires give more onerous conditions for the structure
> Strengthens collaboration between fire and structural fire engineers

Thanks

 Collaborators:The Royal Academy
of Engineering

J Stern-Gottfried
A Law
A Jonsdottir M Gillie J Torero

Law et al, Engineering Structures 2011
Jonsdottir et al, Interflam 2010, Nottingham
Stern-Gottfried et al, SPFE PBD, 2010, Lund
Stern-Gottfried et al, FireRisk M anagement 2009
Jonsdottir et al, FireRisk M anagement 2009
Rein et al, Intefflam 2007, London

Strengthening the bridges

Temperature of the plume

Figure 4.22 Variation of centreline temperature rise with height in a buoyant methane diffusion flame. Scales as $z / \dot{Q}_{\mathrm{c}}^{2 / 5}$ (Table 4.2) (McCaffrey (1979), by permission). A similar correlation has been demonstrated for a range of hydrocarbon pool fires by Kung and Stavrianides (1982)

Conservation of Mass - burning time

>Burning at average heat release per unit area

$$
t_{b}=\frac{m^{\prime \prime} \Delta h_{c}}{\dot{Q^{\prime \prime}}}
$$

If 50 MW fire on $200 \mathrm{~m}^{2}$ burns for 30 min \& 50 MW fire on $1000 \mathrm{~m}^{2}$ burns for 15 min
where t_{b} is the burning time, m " is the fuel load density $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, $\Delta \mathrm{H}_{\mathrm{c}}$ is the effective heat of combustion and Q " is the heat release rate per unit area (MW/m²)

Aftermath

Average Compartment Temperature

Three different beams used

\& Unprotected steel I-beam
H Protected steel I-beam to 60 min (12 mm high density perlite)
H(

Example: Cardington

Unprotected Steel

Protected Steel

Results for Insulated Steel:

Parametric vs. Travelling fires

> Compared to parametric fire, 110\% higher temperatures for a protected steel with 39 mm -gypsum

Structural Behaviour

Fire Progression

Fire Shape/Path

Far Field Temperature Discretization

Sensitivity Results

> Unprotected steel - up to 10\% higher steel temperature (independent of fire size)
$>$ Protected steel - from 65\%-95\% higher steel temperature
\mathscr{H} Maximum over prediction (110\%) at fire areas of 510\%
\&Maximum under prediction (20\%) at fire areas over 85\%

The case study

The above methodology was applied to a real building, The Informatics Forum Building of the University of Edinburgl

Results

$\mathrm{T}_{\max }$-method / $\mathrm{T}_{\text {max }}$-parametric curve - for unprotected steel:

Heron Tower

> 46 Storey Office Building in City of London
> 3-storey atriums forming 'villages'
> First ever project to consider the robustness of a structure in a multistorey fire.

Heron Tower

CIVER

Sudden and generalized ignition (flashover)

$$
q^{\prime \prime} \sim \sigma T^{4}
$$

> When feedback heat flux is $\sim 20 \mathrm{~kW} / \mathrm{m}^{2}$ (above the critical ignition for most known fuels) enhanced flame spread and fast secondary ignition take places in the compartment \rightarrow onset of flashover

Technological Disasters 1900-2000

NOTE: Immediate fatalities as a proxy to overall damage. Disaster defined as >10 fatalities, >100 people affected, state of emergency or call for international assistance.

EM-DAT International Disaster Database, Université catholique de Louvain, Belgium. www.emdat.be
Jocelyn H ofman, Fire Safety Engineering in Coal Mines M Sc Dissertation, University of Edinburgh, 2010

Technological Disasters 1900-2000 Fire and Explosions

Buoyancy

Candle burning on Earth (1g) and in microgravity inside the ISS ($\sim 0 \mathrm{~g}$)

Family of possible fires

Stern-Gottfried et al, SPFE PBD, 2010, Lund

Far Field Temperature

> Maximum temperature at ceiling jet. Average calculated over the correlation with the distance from the fire (Alpert's correlation)

Products of Combustion

Mass flow of combustion products at the flame:
(Atmospheric air is 21% Oxygen, $\mathrm{MW}_{\text {air }}=29 \mathrm{~g} / \mathrm{mol}$)
Flow of products
of combustion

$$
\dot{m}_{e n t} \gg \dot{m}_{p c} \Rightarrow \quad \dot{m}_{\text {smoke }}=\dot{m}_{p c}+\dot{m}_{e n t} \approx \dot{m}_{e n t}
$$

$>$ Smoke is mostly made of entrained air
$>$ Most of the smoke is N_{2} !

Ventilation flows

Flows in and out of the compartment are controlled by buoyancy which scales with the density differences and the size of the opening.
$\rho v^{2}=\Delta \rho g H_{0} \leftarrow$ for buoyant flows

$$
\dot{m}=v A_{0} \Rightarrow \dot{m} \propto \underbrace{A_{0} \sqrt{H_{0}}}
$$

$$
\begin{gathered}
\dot{m}_{a, \text { max }}=0.5 A_{0} \sqrt{H_{0}} \\
\dot{m}_{a, \text { max }} \geq \dot{m}_{a}
\end{gathered}
$$

- The flow through openings has a \dot{m}_{a} Mass flow of air into compartment (kg/s) maximum possible limit.
$A_{o} \quad$ Opening area $\left(\mathrm{m}^{2}\right)$ - At steady state, flow of smoke out is approximately equal to the flow of air in.
$H_{o} \quad$ Height of opening (m)

Pyrolysis

Figure 1.3 Different modes in which fuel vapour is generated from a solid (Table 1.3)

When a solid material heats up, it eventually reaches a temperature threshold where it begins to chemically break down. This process is called pyrolysis and is similar to gasification but with one key difference - pyrolysis is the simultaneous change of chemical composition (eg, long hydrocarbon chains to shorter chains) and physical phase (ie, solid or liquid to vapour) and is irreversible. When a solid is burning with a flame, it is actually the pyrolysis vapours (aka pyrolyzate) directly above it that is burning, not the solid itself.

Flame Spread - rate of area growth

$$
S \propto \frac{\delta_{S}}{t_{i g}}
$$

Flame spread is inversely proportional to the time to ignition

$$
t_{i g}=\frac{\pi}{4} k \rho c\left(\frac{T_{i g}-T_{o}}{\dot{q}_{e}^{\prime \prime}}\right)^{2}
$$

Ignition - fuel exposed to heat

> Material start to decompose giving off gasses: pyrolysis
$>$ Ignition takes place when a flammable mixture of fuel vapours is formed over the fuel surface

Flame Spread vs. Angle

A graph to show the rate of flame spread over balsa at angles between

 -90 and 90 degrees

Upward spread up to 20 times faster than downward spread

Examples of HRR

Under Ventilated fires and External flaming

Ceiling Jet

Figure 2-2.1. Ceiling jet flow beneath an unconfined ceiling.

Size Matters

Surface Area to Volume Ratio vs Floor Area for a 3m High Square Compartment

Encouraging initial reactionsto thiswork

$>$ Abstract submitted in 2007 to Structures in Fire (SiF)
> Title: "ON THE STRUCTURAL DESIGN FIRES FOR VERY LARGE ENCLOSURES"
> Reviewer \#1: This abstract does not it fit with [conference] theme.
> Reviewer \#2: This paper is outside the scope of the conference
> Reviewer \#3: The authors are encouraged to submit their paper somewhere else
> Abstract submitted in 2011 to Structures in Fire (SiF)
> Title: "TRAVELLING FIRES IN LARGE COMPARTMENTS: MOST SEVERE POSSIBLE SCENARIOS FOR STRUCTURAL DESIGN"
> Reviewer 1: Several works has been done and published
> Reviewer 2: No significant input
> Reviewer 3: Authors must provide examples for typical case studies

Thanks

