

Properties of Fire Protection Materials

with special reference to intumescent coatings

Y. C. Wang University of Manchester, UK

Contents of Presentation

- Sensitivity of steel temperatures to fire protection material properties
- Current assessment method for fire protection materials
- A theoretical model for thermal conductivity of porous material
- Thermal conductivity of pores at high temperatures
- Thermal conductivity models for a few common fire protection materials

Intumescent coatings

MANCHESTER

- Variability of "effective" thermal conductivity of intumescent coatings
- Modelling expansion of intumescent coatings
- Some recent research results
- Further research on intumescent coatings

Protected Steel Temperature: EN 1993-1-2

$$\Delta T_{s} = \frac{\left(T_{fi} - T_{s}\right)A_{p}/V}{\left(t_{p}/k_{p}\right)C_{s}\rho_{s}\left(1 + \frac{1}{3}\phi\right)}\Delta t - \left(e^{\phi/10} - 1\right)\Delta T_{fi}$$

$$\phi = \frac{C_p \rho_p}{C_s \rho_s} t_p \frac{A_p}{V}$$

MANCHESTER 1824 Sensitivity of steel temperature to thermal properties of fire protection materials – rock fibre

MANCHESTER Sensitivity of steel temperature to thermal properties of fire protection materials – vermiculite

Fhermal conductivity of fire protection materials: EN 13381-4 assessment method

$$\lambda_p = \left[d_p \times \frac{V}{A_p} \times C_s \rho_s \times (1 + \phi/3) \times \frac{1}{(T_{fi} - T_s)\Delta t} \right] \times \left[\Delta T_s + (e^{\phi/10} - 1)\Delta T_{fi} \right]$$

Combining the strengths of UMIST and The Victoria University of Manchester

The University of Manchestel

A theoretical model for thermal conductivity of porous materials

R2

MANCHESTER 1824

The University of Manchester

A Model of Thermal Conductivity of Porous Materials

$$\lambda^* = \lambda_s \frac{\lambda_g \varepsilon^{\frac{2}{3}} + (1 - \varepsilon^{\frac{2}{3}})\lambda_s}{\lambda_g (\varepsilon^{\frac{2}{3}} - \varepsilon) + (1 - \varepsilon^{\frac{2}{3}} + \varepsilon)\lambda_s} = \lambda_s \frac{\beta \varepsilon^{\frac{2}{3}} + (1 - \varepsilon^{\frac{2}{3}})}{\beta (\varepsilon^{\frac{2}{3}} - \varepsilon) + (1 - \varepsilon^{\frac{2}{3}} + \varepsilon)\lambda_s}$$

 $\beta = \lambda_g / \lambda_s$.

"Effective" thermal conductivity of hot air

$$\lambda_{g} = \lambda_{g,cond} + \lambda_{g,rad}$$

$$\lambda_{g,rad} = 4GdE\sigma T^3$$

G=2/3 for spherical pore, d=diameter G=1 for slits perpendicular to heat transfer direction

Radiation contribution to thermal conductivity of air

Gypsum Plaster

The University of Manchester

 $\lambda^* = C_1 + C_2 \lambda_g \longrightarrow \lambda^* = \lambda_0^* + CT^3$

Combining the strengths of UMIST and The Victoria University of Manchester

MANCHESTER

MANCHESTER

1824

Some thermal conductivity models of common fire protection materials

Table 5.11 Thermal property models for some common generic fire protection materials

Material	Density ρ, kg/m³	Base value of specific heat, J/kg.K	Thermal conductivity,W/m.K
Rock fibre	155–180	900	λ_{rock} fibre = 0.022 + 0.1475 $\left(\frac{T}{1000}\right)^3$
Mineral wool	165	840	$\lambda_{mineral}$ wool = 0.03 + 0.2438 $\left(\frac{T}{1000}\right)^3$
Calcium silicate	Various	900	$\lambda^{*} = \lambda_{0}^{*} + CT^{3}$ $\lambda_{0}^{*} = 0.23 \frac{\rho}{1000}$ $C = 0.08 \times \frac{(2540 - \rho)}{2540}$
Vermiculite	Various	900	$\lambda^{*} = \lambda_{0}^{*} + CT^{3}$ $\lambda_{0}^{*} = 0.27 \frac{\rho}{1000}$ $C = 0.18 \times \frac{(1000 - \rho)}{1000}$

Validation: Effects of density: Vermiculite

Comparison of thermal conductivity values: Calcium Silicate

Gypsum Plaster

The University of Manchester

Conclusions

- Important to have reliable data of thermal conductivity.
- The effects of high temperature on thermal conductivity should be included.
- EN 13381-4 method gives thermal conductivity temperature relationship, but information confidential to manufacturers . Also results lack fundamental insight and based on gross assumption-treating entire fire protection as one layer with average temperature.
- Thermal conductivity of porous materials can be theoretically analysed.
- High temperature radiation within pores should be included.
- High temperature thermal conductivity model proved accurate for a number of fire protection materials: rock fibre, mineral fibre, vermiculite, calcium silicate, gypsu, plaster.

MANCHESTER

Intumescent coatings

Introduction

Combining the strengths of UMIST and The Victoria University of Manchester

Fhermal conductivity of fire protection materials: prEN 13381-8 assessment method

$$\lambda_p = \left[d_p \times \frac{V}{A_p} \times C_s \rho_s \times (1 + \phi/3) \times \frac{1}{(T_{fi} - T_s)\Delta t} \right] \times \left[\Delta T_s + (e^{\phi/10} - 1)\Delta T_{fi} \right]$$

Combining the strengths of UMIST and The Victoria University of Manchester

The University of Manchestel

Inaccuracy of assessment method (prEN 13381-8)

Effective thermal conductivity from standard fire test

The Universit of Mancheste

Predicted results for slow parametric fires

The University of Manchester

Predicted results for fast parametric fires

Expansion ratios

	Standard fire	Slow fire	Fast fire
Web	29.5	47.3	46.5
Flange	25.9	37.3	37.5

Including the effects of expansion thickness for slow fire

MANCHESTER 1824

Including the effects of expansion thickness for fast fire

The University of Manchester

MANCHESTER 1824

Char Structure

50 kw 0.4 mm D.F.T

65 kw 1.2 mm D.F.T

Modelling expansion

Based on ideal gas law:

$$\frac{\partial x}{\partial t} = \frac{\beta R}{a P_0 W_g} \left(T \frac{\partial m_2}{\partial t} + m_2 \frac{\partial T}{\partial t} \right) (T_{melt} < T < T_C)$$

$$F = m_2 \frac{\partial^2 x}{\partial t^2}$$

$$F = m_2 \frac{\partial^2 T}{\partial t^2} + 2m_2 \frac{\partial m_2}{\partial t} \frac{\partial T}{\partial t} + T^2 \frac{\partial^2 m_2}{\partial t^2}$$

$$\therefore \frac{\partial^2 T}{\partial t^2} \approx 0 \text{ and } \frac{\partial^2 m_2}{\partial t^2} \approx 0$$

$$\therefore F \approx 2m_2 \frac{\partial m_2}{\partial t} \frac{\partial I}{\partial t} \text{ when } F \to F_{\text{max}}, \quad T = T_C$$

Retention of released gas of blowing agent

$$\beta = \left(\frac{T_{melt}}{T}\right)^{C_{trap}m_{s,g}T/m_{s,0}T_0}$$

MANCHESTER 2 1824 e

le details for cone calorimeter tests.

>>					
The University of Manchester	Sample ID* 65/50 kW/m ²	Steel thickness (mm)	Target D.F.T. (mm)	Measure D.F.T. (mm)	
f Ma	A04H1/A04L1	5	0.4	0.48/0.35	
ЕP	A04H2/A04L2	5	0.4	0.48/0.37	
	A08H1/A08L1	5	0.8	0.7/0.9	
	A08H2/A08L2	5	0.8	0.82/1.0	
Cone tests	A12H1/A12L1	5	1.2	1.6/1.25	
	A12H2/A12L2	5	1.2	1.65/1.3	
	B04H1/B04L1	10	0.4	0.28/0.5	
	B04H2/B04L2	10	0.4	0.3/0.5	
	B08H1/B08L1	10	0.8	0.7/0.85	
	B08H2/B08L2	10	0.8	0.81/0.83	
	B12H1/B12L1	10	1.2	1.5/1.1	
	B12H2/B12L2	10	1.2	1.6/1.2	
	C04H1/C04L1	20	0.4	0.55/0.54	
	C04H2/C04L2	20	0.4	0.62/0.55	
	C08H1/C08L1	20	0.8	0.83/1.1	
	C08H2/C08L2	20	0.8	0.77/1.0	
	C12H1/C12L1	20	1.2	1.24/1.5	
	C12H2/C12L2	20	1.2	1.23/1.6	

* Sample ID=steel thickness (A: 5 mm, B: 10 mm, C: 20 mm)+coating thickness (04, 08, 12 mm)+heat flux (H: 65 kW/m² L: 50 kW/m²)+sample number (1, 2).

Combining the strengths The Victoria University of

Comparison between theory and test results

Combining the strengths of UMIST and The Victoria University of Manchester

MANCHESTER 1824

The University of Manchestel

Comparison of final thickness

Table 5

Summary of comparison between predicted and measured thickness of samples exposed to 50 kW/m².

Sample ID	Final thickness (mm)/ expansion ratio (E.R.)	Predicted thickness (mm)/E.R.	Difference (%)
A04L1	22/63	17.3/48.6	-22.7
A04L2	20/54	19.4/51.4	-5
A08L1	38/42	32.6/35.6	- 15.8
A08L2	36/36	34.1/34	- 5.6
A12L1	48/38	32.9/26.4	-31.2
A12L2	46/35	36.2/27.7	-21.7
B04L1	25/50	21.6/42	- 16
B04L2	24/48	21.6/42	- 12.5
B08L1	38/47	29.8/35.3	-9.1
B08L2	38/46	29.2/34.9	-23.7
B12L1	41/37	30.3/27.3	-26.8
B12L2	39/33	32.4/26.7	-17.9
C04L1	20/37	21.8/40.7	10
C04L2	19/35	23.1/41.8	21.1
C08L1	39/35	35.1/31.8	- 10.2
C08L2	38/38	33.5/33	-13.2
C12L1	40/27	35.0/23.3	- 12.5
C12L2	42/26	38.3/23.8	- 9,5

Sensitivity: effects of C_{trap} value

The University of Manchester

Sensitivity: effects of bubble size

Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions

Y. Zhang^a, Y.C. Wang^{a,*}, C.G. Bailey^a, A.P. Taylor^b

^a School of Mechanical, Aerospace and Civil Engineering, University of Manchester, UK ^b Leighs Paints, Bolton, UK

MANCHESTER Further results from furnace testing (using exactly the same predictive model and properties as cone tests)

a

The University of Manchester

Char

O 500 1000 1500 2000 2500 3000 3500

Time /s

0

The Victoria University of Manchester

C08ISO Modelling C12ISO1 Test

C12ISO1 Modelling

. . .

Examples of comparison: ISO fire

Fast Fire

0

Combining the strengths of UMIST and

The Victora University of Manchester

500

1000

1500 2000 2500

Time /s

3000 3500

Slow Fire

Conclusions

- Intumescent coatings are reactive materials. prEN 13381-8 not suitable for different fire conditions.
- Expansion process key to coating behaviour.
- A consistent set of material properties can be used for all different fire conditions, including cone calorimeter tests under different levels of heat flux, and furnace fire with different temperature-time relationships.
- Model can predict expansion process and final expansion thickness within 20%, steel temperature-time relationships with 10%.

Further research: microscopic modelling of expansion

Further research: effects of weathering

The University of Manchestel

(a) AZ-1-00

(c) AZ-1-11

(d) AZ-1-21

(e) AZ-1-42

(a) AZ-2-00

(b) AZ-2-42

Further research: stickability

70

80

90

100

The University of Manchester

Overall summary

- Properties of fire protection materials are vital information to performancebased fire engineering of structures.
- A relatively neglected area to other aspects of structural fire engineering.
- Some progresses have been made recently. But much more research is required.
- Technical challenges are as deep as the most challenging of predicting structural performance in fire.

