Buro Happold the engineering of excellence

Fire Engineering in Practice – State of the Art in Performance-based Design

Florian Block

COST-TU0904 – Training School

Agenda

- What is it a fire engineer does?
- What is Performance Based Design?
- How is Performance Based Design done in reality?
- Project examples
- Conclusions

Buro Happold

Founded 1976 in Bath by Sir Ted Happold and 6 partners

26 Offices around the world

- ~1500 members of staff
- Structural Engineering
- Building Services
- Facades
- Infrastructure
- Sustainability
- Geotechnics
- Lighting
- Etc.....
- And Fire Engineering

Fire Safety Objectives

- Life-safety
- Property protection *Museums, galleries*
- Business continuity Finance institutes, data centres, manufacturing facilities
- Security Requirements *Prisons*
- Educational continuity Schools
- Operational requirements Hospitals (surgical theatres)
- Specific local requirements Local AHJ

Focus/Feasibility

- Emergency vehicle access around site & to buildings
- Fire protection infrastructure
- Building separation distances
- Required protection of facades
- Building access requirements

Design Phase

- Identify primary means of egress
- Fire resistance of elements of structure
- Compartment sizes and locations
- List of active systems required
- Outline strategy for response to fire
- Advanced fire modelling
- Marked-up drawings
- Liaison with AHJ
- Contribution to value engineering process

Build/Construction Phase

- Site Inspections
- Checks for compliance with fire strategy
- Attendance at commissioning of fire systems particularly for fire engineering solutions
- As-built Fire Strategy
- Trouble-shooting

Occupy/Operate

- Periodic Audit
- Portfolio Management
- Fire safety training
- Phase Occupancy Strategy
- Personal Emergency Evacuation Plans - schools
- Operations and Maintenance Manuals – *testing of fire engineered designs*
- Training How does this fire engineered solution work in practice?

'Connection' to Fire Engineer

Tailored solutions to solve fire safety issues for which prescriptive solutions don't give satisfying results in the areas of:

- Life safety
- Robustness of Structures
- Architectural Vision
- Sustainability
- Cost

Performance Based Design - Process

1. Conduct cost benefit analysis

Scoping study Test the market

2. Initial consultation

Consult stakeholder (Client, insurers, approving authority and fire brigade) Agree acceptance criteria Agree design fires scenarios

3. Conduct Analysis

Smoke and fire behaviour People movement Structural response Performance Based Design - Process

- 4. Prepare a detailed report
- 5. Gain building control approval
- 6. Construction drawings
- 7. Site inspection

Fire Safety Objectives

Life Safety of people in the building

Protection of other property

Facilitate fire fighting

Property Protection

- Buildings
- Contents

Business / Operational Continuity

Protection of Brand / Image

Acceptance criteria

For structure:

- Stability of structure
- Containment of fire

For escape:

- Visibility
- Toxicity
- Temperature
- Air velocity and pressures

For fire fighting:

- Access
- Fire fighting systems

Determining the Design Fire Scenarios

Perform a Qualitative Risk and Hazard assessment

- Find a number of worst case design fire scenarios
- Also consider low possibility but high consequence event

Determine the Design Fire

Isolated Fires

- Develop in large open spaces or outside
- Fuel controlled

Compartment Fires

- Heat is conserved by surrounding structure
- Much higher temperatures than isolated fires
- Ventilation controlled

Agree with Stakeholders - Fire Engineering Brief (FEB)

Why?

- Performance based designs introduce risk
- Way to consult stakeholders early
- Aims to establish platform of principles for fire engineering to work from

FEDRA Brussels Aspert - Correct

Time as Measure – ASET vs RSET

Temperature

Time to global/progressive collapse or unacceptable collateral damage. This will vary in accordance with the acceptance of society.

Hand Calculations

Axisymmetric Plume

-	
-	Axisymmetric Plume
1	
-	$z_l = 0.533 Q_c^{\frac{2}{5}}$
	when $z > z_1, m = (0.022Q_c^{\frac{1}{3}}z^{\frac{5}{3}}) + 0.0042Q_c$
-	$T_{S} = T_{O} + \frac{K_{S}Q_{C}}{mC_{P}}$
-	$\rho = \frac{144P}{R(T+460)}$
4	$V = 60 \frac{m}{\rho}$
	$V_{s} = 452 a d^{\frac{5}{2}} (T_s - T_o)^{\frac{1}{2}}$
	$v_{\text{max}} = 432 \mu^2 \left(\frac{T_o}{T_o} \right)$
Ŕ	
40	

Hand Calculations

Balcony Spill Plume

ł	
-	Balcony Spill Plume
1	$m = 0.12(QW^2)^{\frac{1}{3}}(z_b + 0.25H)$
-	$\mathbf{\dot{m}}_{b} = 0.31 Q^{\frac{1}{3}} W^{\frac{1}{5}} (z_{b} + 0.098 W^{\frac{7}{15}} - 15)$
-	$m = \left[0.077(A_w H_w^{\frac{1}{2}})^{\frac{1}{3}}(z_w + a)^{\frac{5}{3}}\right] + 0.18A_w H_w^{\frac{1}{2}}$
	$T_s = T_O + \frac{K_s Q_C}{mC_P}$
2	$\rho = \frac{144P}{R(T+460)}$
*	$V = 60 \frac{m}{\rho}$
	$V_{\rm max} = 452 \gamma d^{\frac{5}{2}} \left(\frac{T_s - T_o}{T_o} \right)^{\frac{1}{2}}$

Fire & Smoke Modeling Hand Calculations

Fire & Smoke Modeling Computational Fluid Dynamics (CFD)

CFD Assessment – Results for 'West' Case – Video

- Video 1 Smoke Production Longitudinal Section of Mall
- Video 2 Smoke Visibility Longitudinal Section of Mall
- Video 3 Smoke Visibility Cross Section at Fire Location

Egress Modeling

Egress Modelling

There are different approaches to egress modelling:

- Follow prescriptive escape width and distance provisions in codes
- Use simple flow calculations by hand
- Use network models (Steps,...)
- Use agent based egress modelling (Exodus,...)

Define & Populate Geometry

Determine Population Characteristics

- Age/Gender
- Staff/Public
- Mobility (disabled occupant)
- Walking speed
- Distance to exit
- Flow rate though doors
- Flow rates down/up stairs
- Decision making algorithms;
 - Pre movement time
 - Nearest exit
 - Main exit
 - Follow crowd
 - Redistribution upon queuing

Fill Geometry

Define Fire Location

Egress Modeling

Time to Evacuate + Factor of Safety < Time to untenable Conditions

Structural Fire Engineering Design Methods

Heat transfer from fire to structure - compartment fire

- 1. Table 9 and 10 in BS5950-8: Temperature depending on flange thickness.
- 2. Simple heat transfer method in Eurocode 3-1.2 for protected and unprotected steel members depending on section factor.
- 3. Finite element software: SAFIR, TASEF, ANSYS, ABAQUS

Heat transfer from fire to structure – localised fire

Radiation Convection if member is in the plume View factor calculations for radiation!

Structural Responds – Fire limit state

A fire limit state should be treated as an **Accidental Limit State** with its own associated partial factors

Load Factors (γ_f) - Table 2 BS5950-8• Dead Loads1.0• Imposed Loads (permanent)1.0• Imposed Loads (non-permanent)0.8for commercial offices0.5• Wind Loads0.33

Steel stress-strain curves at high temperatures

Stress (N/mm²)

Concrete stress-strain curves at high temperatures

Normalised stress

- Concrete also loses strength and stiffness from 100°C upwards.
- Does not regain strength on cooling.
- High temperature properties depend mainly on aggregate type used.

Limiting Temperature Method

The *Design temperature* is the temperature which the section will reach at the prescribed fire resistance time. It is based on member type and fire resistance

The *Limiting temperature* is the temperature at which the section is deemed to fail. It is based on member type, thermal gradient and Load Ratio

Limiting Temperature > Design Temperature

External Steelwork calculations

- Assessing flames breaking out of windows.
- If distance between window and steel is large enough no fire protection is needed.
- Simple methods have been published by SCI and are repeated in the Eurocodes.
- Significant assumptions are made in the simplified approach in terms of:
 - Fire development in compartment
 - Flame and smoke plume shape
 - Effects of wind
 - Heat transfer parameters
- For significant projects a series of CFD analyses could be used to perform a more realistic assessment.

Finite Element Analysis – Vulcan

Vulcan is a non-linear finite element program developed by the University of Sheffield and Buro Happold.

- Whole building analysis
- Can be applied to any composite steel-framed building
- Real non-linear material behaviour
- Real structural behaviour
- Exact fire protection requirements calculated for any steel member

Sensitivity Study

- It is essential that sufficient sensitivity studies are performed to ensure that a robust solution.
- The input parameter and boundary conditions need to be varied beyond the normal design assumptions.
- Check for sudden changes in behaviours 'Cliff edge analysis'

Reporting and Quality control of Assessment

Reporting:

- Detailed documentation of all assumptions and input variable with appropriate references
- Full results in calculations reports
- Summary report for stakeholders

Checking:

- 4 eyes concept
- Design reviews and sanity checks by senior staff
- Third party checking

Site Inspections and performance tests

- Site inspections are essential for performance based solutions during construction and after completion.
- Testing of mechanical systems smoke test
- Trial evacuations

Problem Specification (Scenario Setting)

Solution Strategy

Analyse

Review and Report

Case Study 1 United States Institute of Peace Washington DC

Study Purpose

Provide safe environment for atrium occupants with **reduced smoke extract**

Escape Time + Safety Factor < Untenable Fire Conditions

Compare Fire & Smoke Model Vs Egress Model

Egress Model (Bridge)

Egress Model Scenarios

Scenario 1: South Atrium -

Time for occupants to egress a fully occupied Level 4 open bridge within the South Atrium

Scenario 2: North Atrium

Time for occupants to egress the Level 3 North Atrium base

Scenario 1 Egress Model

Evacuation Timeline (Scenario 1)

- Egress model time 67 seconds (1m:07s)
- Safety Factor : 50% of egress model time 34 seconds

TOTAL EVACUATION TIME = 191 seconds (3m:11s)

Results – Fire Model 4th Floor

Smokeview 5.6 - Oct 29 2010

Time: 0.0

Slice VIS_Soot m

Results – Fire Model 4th Floor

Conditions maintained tenable for 245 seconds

Scenario 2 Egress Model

Evacuation Timeline (Scenario 2)

TOTAL EVACUATION TIME = 384 seconds (6m:24s)

Results – Fire Model 3rd Floor

Conditions maintained tenable for 657 seconds

RSET Vs ASET Conclusions

Scenario	Total Egress Time (+ 50% code Safety Factor)	Time to Untenable Conditions	Additional Safety Factor (over the req'd 50% by code)
1	191 s (3m:11s)	245s (4m:05s)	54s (22%)
2	384 s (6m:24s)	657 s (10m:57s)	273s (42%)

Safe conditions are maintained for longer periods than the minimum required safe egress times by means of smoke control

Project Examples:

The Rock Triangle, Bury

Building Description

- £150m retail, leisure and residential development in Bury, UK.
- 10 Buildings forming a new city centre
- Block D Debenhams Store
- 3 story composite steel frame
- Cell beams
- Fire resistance period: 60 minutes

Overview of a floor plate

Location of Vulcan model

Methodology and Process

Show an equivalent standard of performance to what is seen to be acceptable in prescriptive guidance.

- 1. Agree methodology with Stakeholders
- 2. Develop design fires (including cooling)
- 3. Develop assessment criteria
- 4. Build geometry of the sub-frames and analyse for different fires
- 5. Assess connection forces
- 6. Write a detailed report
- 7. Present and negotiate with Building Control

Design Fires

DF1-Standard Fire

DF2-Slow Fire

- Worst Parametric Fire
- Largest vertical deflections of protected beams
- Critical for columns

DF3-Medium Fire

DF4-Fast Fire

Hottest fire / Early deflections of unprotected beams / Largest connection forces

Acceptance Criteria

Stability	—	checked by Vulcan
Integrity	_	controlled over deflection limits
Insulation	_	normally not a problem in composite slabs

Design Fire	Assessment Period	Acceptance Criteria
DF1 – Low Ventilation (No Cooling)	60 minutes	Check for runaway deflections
DF2 – Low Ventilation (With Cooling)		Deflection of protected beams < Span/20
DF3 – Medium Ventilation (With Cooling)	60 minutes (compartment floor)	Deflection of slab < Span/20 (compartment floor)
DF4 – High Ventilation (With Cooling)	Entire fire duration (non- compartment floor)	Deflection of slab < Span/10 (non- compartment floor)
		Connection forces to be provided.

Material Temperatures

Typical steel temperatures calculated by using EC3-1.2 heat transfer calculations for each part of the section

Material Temperatures

Typical concrete slab temperatures

Time (minutes)

Proposed Fire Protection Regime

Vulcan Model - Loading

Floor Loads:

SFE Analyses and Results Deflected shape_DF4 Buro Happold the engineering of excellence

SFE Analyses and Results

Max protected beam deflections

SFE Analyses and Results

Max differential slab deflections

Connection forces

Compression

Connections in Fire - Cardington

Lower flange buckling occurred during early stages of fire – thermal expansion Bolt failure occurred during cooling phase

Connections in Fire

Double web cleat for unprotected beams

Endplate connections to protected beams framing into columns

Site Pictures

Conclusions

- About 30% of floor beams can be unprotected
- Some protected secondary beams needed to be stronger
- Reinforcement mesh in slab increased
- Connection design influenced
- Significant cost savings

ME Hotel, London

ME Hotel – Aldwych London

Client: MELIÃ HOTELS INTERNATIONAL Architects: Foster + Partners

10 storey refurbished hotel and residential building with central atrium

Assessment Methodology

Hazard identification and risk assessment

Structural response modelling at elevated temperature

- Define design fire
- Determine fire protection scheme
- Calculate the heat transfer of the structure
- Calculate the response of the structure at the elevated temperature
- Assessment criteria Global stability

Design Fire Scenarios

Risk assessment result: Unsprinklered fire at the atrium base 2 fire locations have been assessed

Thermal Analysis – Fire model

Design fire – Localised

Cylinder Model for heat transfer

Incident heat flux calculated based on 3D location of steel members in relations to fire for about 980 members.

Thermal Analysis – Fire protection

Preliminary protection

- Between G floor level to 1st floor level – 120 mins
- Between 1st floor level to 2nd floor level – 60 mins
- Rest of columns running to top floor – 60 mins
- Rest of atrium steelworks unprotected

Thermal Analysis - Results

Structural Analysis using Vulcan - Restraints

Structural Analysis – Results at Rear North

Site images

Conclusion

- Performance based design is sometimes the only way to demonstrate the safety of a building.
- Buy-in from all stakeholders required.
- Sensitivity studies are essential.
- If carefully conducted performance based design can generate significant value for a project.
- Great engineering discipline!

