PROGRESSIVE COLLAPSE ANALYSIS OF STEEL FRAMES IN FIRE

Ruirui Sun Supervisors: Ian Burgess, Zhaohui Huang University of Sheffield, UK

Progressive Collapse Modelling of Steel Frames under Fire

- Member-based structural fire engineering simply does not work for large, complex buildings (see the NIST report on WTC7).
- **Performance-based SFE design** inevitably has to depend on non-linear numerical modelling of large subframes of the structure.
- If the building is to avoid the possibility of disproportionate collapse in fire, this numerical modelling must be capable of predicting real structural collapse, rather than the first loss of stability.

- Finite element software specialized in Structural Fire Engineering;
- Developed for over ten years;
- The steel-framed composite buildings are modelled as assemblies of finite beam–column, connection and layered floor slab elements;

Static-Dynamic Procedure

Explicit time integration method is adopted for dynamic analysis. The kinetic conditions, including displacement, velocity and acceleration, is determined by that of the previous step. Small time step is required.

1.	Initial conditions and initialization:
:	Set initial value of material state variables and u_0^n , \dot{u}_0^n , compute mass matrix
	M and initially estimate the time step.
2.	Initialise the nodal internal force.
3.	Compute the accelerations $\ddot{u}_i^n = (M^n)^{-1}(Q_i^n - F_i^n - D_i^n)$
4.	Time update: $t_{i+1} = t_i + \Delta t_i$; $\Delta t_{i+1/2} = (\Delta t_i + \Delta t_{i+1})/2$
5.	First partial update nodal velocities: $\dot{u}_{i+1/2}^n = \dot{u}_{i-1/2}^n + \Delta t_i \ddot{u}_i^n$
6.	Enforce boundary conditions.
7.	Update the nodal displacements: $u_{i+1}^n = u_i^n + \Delta t_{i+1/2} \ddot{u}_{i+1/2}^n$
8.	Calculate the nodal internal forces.
9.	Compute \ddot{u}_i^n
10.3	Second partial update nodal velocities: $\dot{u}_i^n = \dot{u}_{i+1/2}^n + (t_{i+1} - \Delta t_{i+1/2})\ddot{u}_{i+1}^n$
11.	Check energy balance at time step $i+l$
12.	A daptive check for variable time step.
13.1	Update counter: i=i+l
14.	Output, if simulation not complete, go to 4.

Validation

Key issues:

- 1. Buckling of critical column
- 2. Yielding of beams connected to heated columns
- 3. Fracture of connections between beams and columns
- 4. Load sharing and buckling of adjacent columns
- 5. Pull-in of adjacent columns

Influence of load ratio

Higher load ratios:

Low buckling temperatures of C1; Lack of lateral restraint.

Lower load ratios:

Higher failure temperature of C1; adjacent columns buckle simultaneously.

Progressive Collapse Modelling of Steel Frames under Fire

Influence of beam sections Strongest beam sections:

Stiff restraint to the heated column; high failure temperature; all adjacent columns buckle simultaneously.

Smaller beam sections:

Lower collapse temperature; pull-in of adjacent columns induces total collapse.

Progressive Collapse Modelling of Steel Frames under Fire

Progressive Collapse Modelling of Steel Frames under Fire

- Connection is important for robustness of steel structure in fire.
- Component-based model is widely developed for modelling the connection behaviour in changed temperature.
- Connection is simulated by assembly of springs with known characteristic.
- Analysis terminates after first component fails due to numerical singularity.

Progressive Failure of Connections in Fire

Progressive Failure of Connections in Fire

Progressive Failure of Connections in Fire

Progressive Collapse Modelling of Steel Frames under Fire

Progressive Collapse Modelling of Steel Frames under Fire

Beam Span

Mid-span displacement of beamNormal force in connectionLonger beam---Larger compressive force---Buckling of beamsLittle influence on the tensile normal forces

Sufficient compressive ductility avoid large compressive force in beams No influence on the failure temperature of connections

Tensile Ductility

Beam Section	Span	Tensile ductility(T _p)	Rotation Capacity (rad)	Failure Temperature (°C)		
	9m	0.2	.6099	679		
UB 533x210x122		0.4	.9530	735		
		0.6	No Failure	No Failure		
		0.2	.4659	689		
UB 533x210x122	12m	0.4	.7089	739		
		0.6	No Failure	No Failure		

Tensile ductility contributes more to avoiding total connection failure and enhancing their rotation capacity, by reducing the catenary force necessary for beams to carry their loads at high temperatures.

Tensile Ductility

The catenary force decreases as the deflection and temperature increase.

Ductility Demand of Connections

	Ultimate limited states	Fire limited states		Ductility Index									
Span (m)			Cross section	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	(KN/m)	(KN/m)		Failure Temperature(°C)									
6	97.3	62.1	UB406×178×60	633	693					-/~	1	1	
9	97.3	62.1	UB533×210×101	583	615	647	675	707	751	<u> </u>	Fa/	ilure	77
12	97.3	62.1	UB610×305×149	553	571	599	619	639	655	675	703	727	7

Beams with larger span require higher ductility of connection to retain the integrity.

Further Application and Discussion

Displacement

Further Application and Discussion

Practical global collapse analysis in fire

Computational Efficiency

High non-linearity and complexity slow down the computational speed.

Thank you!

Progressive Collapse Modelling of Steel Frames under Fire