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Background

* Member-based structural fire engineering simply does
not work for large, complex buildings (see the NIST
report on WTC7).

* Performance-based SFE design inevitably has to depend
on non-linear numerical modelling of large subframes of
the structure.

* If the building is to avoid the possibility of
disproportionate collapse in fire, this numerical
modelling must be capable of predicting real structural
collapse, rather than the first loss of stability.
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Introduction of VULCAN

* Finite element software specialized in Structural Fire
Engineering;

* Developed for over ten years;

* The steel-framed composite buildings are modelled as
assemblies of finite beam—column, connection and
layered floor slab elements; A
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1. Imtial conditions and it alization

Explicit time integration st 4 et e
methOd is adopted for M and iritially estimate the time step.

2. Imtialize the nodal internal force.

dynamic analysis. The 3. Computethe acceleraions t” = (317710} — £ = DY)

. . gy e . . 4 Timeupdate: t,,, = ¢, + 4t ; Aty 0 = (AL +45,,)/2
klnetlc Condltlons’ InCIUdIng 3. First partia update nodal welocities: @], | 4 = @] 5 + AL 1)
displacement, velocity and 5. Enforce baandary conditions.

. . . 7. Update the nodal displacements: w)'y; = w) + At alt g s
acceleration, is determined ottt moch ingrenal oraes
9. Compute i)

by that of the previous step.

10, Second partial update nodal velocities: d) = da)L |y + (t 2 — &b a0ty
Small time step is required. 11 Check energybalaice  time sip 141

12, Adaptiwe check for wanable tme step.

13 Update cowrter: t=x+!

14, Cratput; 1if stmulaton not complete, go to 4
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Collapse Mechanism of Frames in Fire
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Collapse Mechanism of Frames in Fire
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Key issues:

Buckling of critical column

Yielding of beams connected to heated columns
Fracture of connections between beams and columns
Load sharing and buckling of adjacent columns

. Pull-in of adjacent columns

e wheE
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Influence of load ratio
Higher load ratios:
Low buckling temperatures of C1; Lack of lateral restraint.
Lower load ratios:
Higher failure temperature of C1; adjacent columns buckle
simultaneously.
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Collapse Mechanism of Frames in Fire

Influence of beam sections

Strongest beam sections:
Stiff restraint to the heated column; high failure temperature; all
adjacent columns buckle simultaneously.

Smaller beam sections:
Lower collapse temperature; pull-in of
adjacent columns induces total collapse.
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Collapse Mechanism of Frames in Fire
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* Connection is important for robustness of steel structure in
fire.

 Component-based model is widely developed for modelling
the connection behaviour in changed temperature.

* Connection is simulated by assembly of springs with known
characteristic.

* Analysis terminates after first component fails due to
numerical singularity.
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Progressive Failure of Connections in Fire
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Progressive Failure of Connections in Fire
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Ductility Demand of Connections in Fire
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Compressive Ductility
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Sufficient compressive ductility avoid large compressive force in beams

No influence on the failure temperature of connections
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Ductility Demand of Connections in Fire

Tensile Ductility

. . Failure
Beam Section Span Te.n .5|Ie ROt.a tion Temperature

ductility(T)) | Capacity (rad) (=)

0.2 .6099 679

UB 533x210x122 O9m 0.4 .9530 735
0.6 No Failure No Failure

0.2 4659 689

UB 533x210x122 12m 0.4 .7089 739
0.6 No Failure No Failure

Tensile ductility contributes more to avoiding total connection failure and
enhancing their rotation capacity, by reducing the catenary force
necessary for beams to carry their loads at high temperatures.
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The catenary force decreases as the deflection and temperature increase.
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Ductility Demand of Connections

Ductility Index

Ultimate| Fire

Span| limited \limited| . .. 10.1]/02|03|04|05|06|07|08]|09]|1.0
(m) | states | states
(KN/m) ((KN/m) Failure Temperature(°C)
6 97.3 62.1 |UB406x178x60(633(693| - | -- | - [ -- —7\\ - | -
K/VOFQ'\\
9 97.3 62.1 |UB533x210x101({583(615|647(675|707|751| -- \\’/U\-I'e7
12 97.3 62.1 |UB610x305x149(553(571|599(619|639(655|675|703|727| --

Beams with larger span require higher ductility of connection to retain
the integrity.
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Further Application and Discussion
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Further Application and Discussion

Practical global collapse analysis in fire

Fire modelling

Accurate prediction of temperature
in members

Detailed and Comprehensive
Element Formulations

o ;Efébﬂetlements with
proper cracking and
crushing model

Beam-column elements Component-based Dealing with debris loading and
with local buckling

connection model impact
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Computational Efficiency

High non-linearity and complexity slow down the computational speed.
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Thank you!
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