Overview of the development of fire
engineering Iin research and practice

Jean-Marc Franssen
Im.franssen@ulg.ac.be

Various methods for determining the fire resistance.

Experimental Tests

Tabulated data
Simple calculation models

Advanced calculation models




Method 1 : Experimental testing

Testing specimens for material behaviour

Test setup at NIST

Method 1 : Experimental testing

»Testing material behaviour
Standard fire tests.

» Circumstancial disadvantages: cost, delays, limited # of facilities.

 Real disadvantages: only elements, size of the element,
3 boundary conditions, variability.




Method 1 : Experimental testing

»Testing material behaviour
»Standard fire tests
Small scale fire tests Steel: OK
Hydral materials: ???

Picture from Nakamura et al.,
1t IAFSS, Gaithersburg, 1985

Method 1 : Experimental testing

»Testing material behaviour
»Standard fire tests

»Small scale fire tests
»Large scale fire tests

Rare - Local fires - Observations more than research

Courtesy: T. Lennon - B.R.E:
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—Experimental testing is used mainly in research.

—Experimental testing will remain forever.

=\erification of basic hypotheses used in calculation models
=|ntegrity criteria in separating elements




Method 2 : Tabulated data

Definition: presentation, in simple form, of results obtained by
other methods.

Standard fire
resistance

Minimum dimensions (mm)

Slab Axis-distance a
thickness h

Two way

I/, <15

15<1/l,

<2

1

2

4

5

REI 30

60

10*

REI 60

80

20

10*

REI 90

100

30

15*

REI 120

120

40

20

REI 180

150

59

30

REI 240

175

65

40

l, and I, are the spans of a two-way slab where | is the longer span.

For prestressed slabs the increase of axis distance should be noted.
The axis distance a in Column 4 and 5 for two way slabs relate to slabs
supported on all four edges. Otherwise, they should be treated as one-way

spanning slabs.

* Normally the cover required at room temperature will control

Method 2 : Tabulated data

Reinforcement ratio @ = 0.50 ; Eccentricity e <200 mm

Standard fire N C*ﬂumn width b, / axis distance a
e G n=0.15 n=0.30 n=0.50 n=0.70
R30 30 150/25* 150/25* 250/35:300/25* 500/40:550/25*
40 150/25* 150/30:200/25* 300/35:450/25* 550/30
50 150/25* 200/30:250/25* 400/40:500/25* 550/50:600/40
60 150/25* 200/35:300/25* 450/50:550/25* @)
70 150/25* 250/40:400/25* 500/40:600/30* 1)
80 150/25* 300/40:500/25* 550/50:600/40* 1)
1 [ |
—> R 60 30 150/30:200/25* Q): -450/25* 450/50:550/30 550/50:600/40
40 150/35:250/25* 0:49:500/25* 500/40:550/35 600/60
—J» 50 200/35:300/25* 300:45:550/25* 500/55:550:40 )
60 200/40:500/25* 400:40:600/30 550/50:600/45 1)
70 200/40:550/25* 500:40:550/35 600/60 (1)
80 250/40:600/25* 500:40:600/35 (@) 1)
R 90 30 250/40:450/25* 300/50:500/25 500/55:600/40 600/80
40 200/50:500/25* 350/50:550/35 550/60:600/50 @)
50 250/45:550/25* 500/45:550/40 600/60 1)
60 250/50:550/30 500/50:550/45 600/80 1)
70 300/50:550/35 550/50:600/45 (1) (1)
80 350/50:600/35 550/60:600/50 @ @)
* Normally the cover at room conditions will control 12

(1) Requires a width greater than 600 mm.




Method 3 : Simple calculation models

Definition: Method based on global equilibrium conditions.

Method 3 : Simple calculation models

» Extrapolations of similar methods used at room temperature

» Can be used « by hand »
* One method for each material/member type.
» Not well suited for complex structures.

=> Used for real projects.

g L?

At 20°C:




Method 4 : Advanced calculation models

Definition: Based on principles of structural mechanics or of
heat transfer (local equations).

T 0T 0O oT
ox>  oy* o1’

+Q—CIOE:0

Method 4 : Advanced calculation models
* Finite differences, finite elements, boundary elements.

* Require a computer (numerical calculation models).




Method 4 : Advanced calculation models

Three different families of software:

1. 'My Ph.D." software
e One author (university)

Method 4 : Advanced calculation models

Three different families of software:

1. 'My Ph.D." software

* One author (university)
e Limited field of application




Method 4 : Advanced calculation models

Three different families of software:

1. "My Ph.D." software
e One author (university)
» Limited field of application
e Limited availability

Method 4 : Advanced calculation models

Three different families of software:

1. "My Ph.D." software
One author (university)
Limited field of application
Limited availability
Limited durability

g




Method 4 : Advanced calculation models

Three different families of software:

1. 'My Ph.D." software

2. Dedicated software (VULCAN, SAFIR,...)
 From a group (University)

Method 4 : Advanced calculation models

Three different families of software:
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Method 4 : Advanced calculation models

Three different families of software:

1. 'My Ph.D." software

2. Dedicated software (VULCAN, SAFIR,...)

 From a group (University)
* Wider field of application
« Become available now
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Method 4 : Advanced calculation models

Three different families of software:

. 'My Ph.D." software

. Dedicated software (VULCAN, SAFIR,...)

. Commercial software (ANSYS, ABAQUS,...)
* Widely distributed, used and validated
e Price!ll
* Nice graphics

+++ Or ---




What can we model and what should we test?

Which material can we model?
A priori, all of them...
If we have the properties.
Which properties?
Properties of the material?
No. Properties of the model.
=> Know the limits of your model.

Diamond 2008 for SAFIR

CONTOUR PLOT
TEMPERATURE PLOT




What can we model and what should we test?

Which structure can we model?
A priori, none of them...
except if we made a test before on a similar structure.




2) Composite steel concrete columns

L Integrity of the plaster board?

Diamond 2009.a.5 for SAFIR

FILE: Section_GA_F
NODES: 750
ELEMENTS: 1255

SOLIDS PLOT
FRONTIERS PLOT
CONTOUR PLOT
TEMPERATURE PLOT

TIME: 3600 sec




Yesterday
Uniform temperature

Linear gradient

Yesterday
SO fire

Method 4 : Advanced calculation models

Today

Non uniform temperature

Method 4 : Advanced calculation models
Today

Natural fires (with cooling phase)

=+ |50 fire
= tpeak =
—0— tpeak =
—»— tpeak =
—o— tpeak =
—*— tpeak =

—0— tpeak =

Temperature (°c)

— tpeak =

240 300
Time (min)




Requires specific material models.

800 1000 1200

Compressive strength of concrete

—{O— Hot

=< Residual

A0} (-]

400 S00 600 700 800 500 1000

Maximum tempearature ['C]

Difference between hot and residual compressive strength
From Li & Franssen, Journal of Structural Fire Engineering, 2(1), 2011, 29-44.




Collapse of an undergroud car park after the fire has been put down

Yesterday Today

Implicit transient creep Explicit transient creep
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Today
3D analyses
Today
Shell elements

Method 4 : Advanced calculation models
Method 4 : Advanced calculation models

Yesterday
Linear elements

Yesterday
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Yesterday Today

One type of F.E. Several types of F.E.

Yesterday Today

One way bending in Tensile membrane action
floors




Yesterday Today

Static analyses Dynamic analyses

AF) = [K]{au g ) - Kl ]+ MG

Lee’s Frame Analysed with Shell F.E. in bending
dT/dt =1°C/s

Diamond 2004 for SAFIR]

SHELLS PLOT
POINT LOADS PLOT
DISPLACEMENT PLOT (= 1)

TIME: 20.97152 sec
Lee_shell_hot.tsh

ROE+IT m




Other considerations

Failure mode may be more critical than time of collapse

Diamond 2004 for SAFIR

FILE: Frame stat 2D
NODES: 123
BEAMS: 61
TRUSSES: 0
SHELLS: 0

SOILS: 0

BEAMS PLOT
IMPOSED DOF PLOT

I (PE500.tem
I PE450.tem
[ 1PEs00C. tem
I 1PE450c.tem




VERT. DISPL. [m]

o Static
— Dynamic

5.0 E+00 m

TIME [min.]

VERT. DISPL. [m]

o Static
— Dynamic

5.0 E+00 m

TIME [min.]

t=26’30"




— Dynamic

VERT. DISPL. [m]

LB S U
()] (6] (6]} (6]
! ! ! !

:

5.0 E+00 m

o
o1

TIME [min.]

t=26"34"




The same, now Iin 3D, with heated purlins

Diamond XL for &

LOCAL FIRE O 20

DISPLACEMENT PL

TIME: 2087152 sec

2,0 E+00m

3D frame (no amplification in the deformation)




When performing a S.1.F. analysis:

v make it simple,
v’ 0r not,

but not both.

Natural fire with cooling phase.
Criteria?
¢ Time of collapse (natural fire) > required time for evacuation
¢ Infinite resistance (until complete burn out) ?
¢ Time of collapse (natural fire) = R(1SO) ?
Stupidity?

Or maybe not!




Representation of the fire ?

Nominal fire curve?
OK for structural research in the heating phase

Post-flashover parametric fire curve?
OK for structural research with a cooling phase

Zone models?
Ok If the geometry Is appropriate
Difficulty for the columns in multi zone models

Representation of the fire ?

Local models (Hasemi)?
OK if the geometry is appropriate
Hasemi not applicable for columns

CFD
Not for post-flashover fires
OK when local fire, large compartment with
complex geometry, big budget.
Which interactions to consider?




4

Temperatures in the structure

7 N\

Conditions
in the compartment —> Structural behaviour

59

Structural fire engineering used in practice to:

1) Prove stability without any protection on steel
2) Reduce fire protection on steel
3) Prove fire resistance of existing concrete structure

4) Prove failure mode




Tomorrow’? Method 4 : Advanced calculation models

 \Very large models
» Connections
» Spalling of concrete




Method 4 : Advanced calculation models

Tomorrow?

 C.F.D. - FE. interconnection

Method 4 : Advanced calculation models

Tomorrow

Moisture movements (e.g. in wood)
Mechanical properties of gypsum
Shear strength of concrete




Thank you and ...... Fly high!




