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I Introduction
L

SHEAR BUCKLING IN STEEL MEMBERS SUBJECT
TO FIRE

Motivation:
» | steel profiles with class 4 cross-section are frequently used

» The utilisation of beams with slender webs has increased in the
last few years

» The shear buckling phenomena at high temperatures have not
been widely studied
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I Introduction
L

SHEAR BUCKLING IN STEEL MEMBERS SUBJECT
TO FIRE

Objectives:

» Study the shear buckling phenomenon of steel members, with
welded or hot-rolled H or | shape, subjected to high
temperatures

» Develop simple design rules for fire design of these steel
elements, as close as possible to the principles of the design
rules implemented by Eurocode 3 at normal temperatures

Shear Buckling in Steel Members Subject to Fire

I Point of Situation
L
Schedule:

My PhD started in January 2013.

Year O Year 1 Year 2 Year 3 Year 4

Presently, | am in the middle of the first year.

Shear Buckling in Steel Members Subject to Fire

PhD ki
| o T

Shear buckling behaviour in
fire situation

Experimental analysis

Validation of numerical models}
Parametric studies }

rules

IR

Development of simple design ]
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I Resistance to shear
L
Tension fielczl models:
o

¢ & ; | ) + ==
@2 &
Basler (1961) Fujii (1968) Chern & Ostapenko  Rockey & Skaloud
(1969) (1969)

- c

£ et
Komatsu (1971) Hoglund (1971) Charp & Clark Steinhardt & Schroter
(1971) (1971)

» These theories mainly assume superposition of buckling and post-
buckling shear strength
» They differ regarding the definition of tension field action
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I Resistance to shear
L
Tension field models:

C > EN 1993-1-5 implemented the method
L] L known as “Rotated Stress Field”
developed by Hoglund

» This method was firstly developed for

¥ » girders with web stiffeners at supports
cC only, because other existing methods
Hoglund (1971) were very conservative in this case
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I Resistance to shear
L

Mechanical model of the Rotated Stress Field

I Design rules according to EN 1993-1-5
.

Is shear buckling verification necessary?

—
method:
. Verification is not
For unstiffened webs: False == necessary!
v +
x [ 5 ’ Iy
N p v + 4 B2 2
" " |
PR s 4 For stiffened webs:
[ 52 & et . h £
"1 y =231 -k 7 True = Verification is necessary!
Pure shear Shear and Principal W n
stress state membrane stresses
stresses
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I Design rules according to EN 1993-1-5 I Design rules according to EN 1993-1-5

Design shear resistance is taken as:

p
Vird @ ﬁ hy t, 3

Resistance from Resistance from Coefficient that
the web the flanges depends on the
steel grade

|
[ ]
For fyw < 460 MPa For fy, > 460 MPa

| |

n=12 n=10
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Contribution from the web
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I Design rules according to EN 1993-1-5
.

Contribution from the flanges

The contribution from the flanges is given by the Equation below,
which assumes the formation of four plastic hinges in the flanges at

the distance c.

[ Usually the contribution of flanges is small and can be neglected.l
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Experimental tests at normal temperature from
——— literature

» Some characteristics of performed experimental tests:
= Steel grade S275 (f,, = 274 MPa)
= Young modulus (E): 206 GPa

= Beam length: 1.8 m

Structural system of the girder
= Web depth (h,,): 300 mm
= Web thickness (t,,): 2 mm
= Flange width (b): 100 mm

- Flange thickness (tf): 5mm Cross-section of the tested

beams

C. Gomes, P. Cruz, and L. Silva - “Experimental evaluation of the shear behaviour of
slender steel beams”, University of Minho, Civil Engineering Department, 2000.
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Experimental tests at normal temperature from
——— literature
H +» Beams with transvarse stiffaners:

Beamn ¥T1 {ah.ad)
Blaam VTT (ah.=37}

Baam VT3 (A1)
= Transverse slifleners thickness (¢, ). 5 mm

= Spaca betweon transworse stiffoners (a): 300, GO0 and 900 mm
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Experimental tests at normal temperature tr
——— literature

H +» Beams with transverse and longiludinal stiffanars:

Bawm YTLY (ahoed)
Bawm VTLY (ahoe)

Baam YTLY (ahoat)
= Longitudinal stiffener thickness (r, )k 5 mm
= The longitudinal stiffenar was placed B0 mm balow the lower surface
of ther upper flange
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Experimental tests at normal temperature from
——— literature
» Loading:

= VT1, VT2, VTL1 and VTL2 (1 load point)

v
AN
P 1800 "
= VT3 and VTL3 (2 load points)
v v

1800

Ca
B
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I Shell finite element model
L
Model 1:

Mesh size: 10x10 mm2 I

" .= SAFIR
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'5 Shell finite element model
odel 1

Restraints
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'5 Shell finite element model

Mode 1

Displacements
imposition
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'5 Shell finite element n |
Model 2

Loads
imposition

TN
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'5 Local Imperfections — buckling modes

Maximum imperfection amplitude: CAST3M + Ruby

= Flange: (L8 ﬁ-ﬁ
. e
» Web: 0.8 00
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'5 Global Imperfections — buckling modes

” Maximum imperfection amplitude: 08 — = —

1‘GD

CAST3M + Ruby ﬂ ’

e
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'5 Residual Stresses

» Pattern of the residual stresses considered in
numerical models (welded profile):

0.15b
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< 025f |C
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I Results at normal temperature
.

Experimental vs. numerical analyses
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I Results at normal temperature
.

Experimental vs. numerical tests

» Ultimate shear resistance/ Numerical model 1 adopted

Numerical model 1 | Numerical model 2 Comparison between

Test Experimental | (\ith imposition of | (with imposition of experimental test and
es
o displacements) * forces) * numerical model 1
[kN] [kN] %)

VTl 110 103.92 93.48 5.52
vr2 110 10656 93.26 3.13
VT3 150 13537 134.96 9.75
VvTLl 130 120.54 100.73 7.28
vTL2 133 124.59 100.44 6.32
VTL3 172 146.23 146.85 14.98

* results obtained taking account the global imperfections, the local imperfections and the residual stresses
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I Results at normal temperature
Ll
Problems with model 2

o
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I Results at normal temperature
.

Beams at the end of numerical test (room temperature)
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I Results at normal temperature
.

m Experimental vs. Numerical with Global & Local Imp.
——
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I Results at normal temperature
.

m Experimental vs. Numerical with Global & Local Imp. vs. Numerical
8 \ith Global Imp. & Local Imp. & Residual Stresses

Redwction factor g, |-

0.0 05 1 15 20 25 0
Slenderness i, [
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I Design rules at high temperatures
.

No explicit rules are given in Part 1-2 of EC3 for shear
buckling verification at high temperatures

!

Therefore, we used the design rules for design shear resistance
at normal temperature with the reduction factors for stress-
strain relationship of carbon steel at elevated temperatures

nf
Vo.ra = Vow,ra + Vo ra < hw tw \E;,W
M1
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I Design rules at high temperatures
.

» Room temperature:
_ [235 Eg
o= [ 74 MPa €0 = Tywe 210000
20C = 06 GPa
Slenderness  Slenderness
(@) (A s00°c)

» High temperature (500°C):

€ _  |kEsooc [235 E VTl 1.818 2.073
500°C ™ ky, 5007 A fyw \ 210000

VT2 1.737 1.980
kesooc _ [0.600 _
\ kys00c N 0780 0877 VT3 1.431 1.631
l VTLL 1.707 1.947
VTL2 1.579 1.800
es00c = 0.877 &30:¢
VTL3 1.253 1.429

Shear Buckling in Steel Members Subject to Fire

I Results at high temperature
.

Beams at the end of numerical test (high temperature)
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I Results at high temperature
.
m Results at 500°C: ) Voarinnoe

Numerical with Global Imp. " hw ty fyw kysooc/V3

EC3 Part 1-5
7

Reduction factor z, ||
=

15
Slendernessi, [ ]
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I Results at high temperature
Ll
m Results at 500°C:
—

Numerical with Global Imp. vs. Numerical with Local Imp.

—C

Reduction factor z, ||
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I Results at high temperature
Ll
m Results at 500°C:
—

Numerical with Global Imp. vs. Numerical with Local Imp. vs.
Numerical with Global & Local Imp.

Reduction factor z, ||

00 08 r 15 20 13 0
Stenderness i, [-]
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I Results at high temperature
Ll
m Results at 500°C:
—

Numerical with Global & Local Imp. vs. Numerical with Global Imp.
& Local Imp. & Residual Stresses
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l Conclusions
L
Conclusions:

» Understand the physical behaviour of this phenomenon

» Analyse the EC3 prescriptions to numerically model elements
with shear buckling failure:
= normal temperature
= fire situation

» Specific concluding remarks regarding numerical modelling:
= Residual stresses are important at normal temperature but not
so much at higher temperatures
= The geometric imperfections should always be considered
= ECS3 has shown conservative
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Parameters to be analysed in shear buckling study

» Different cross-sections

il Lk 5 L
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Parameters to be analysed in shear buckling study
» Different span lengths: 1200, 1800 and 2400 mm

» Transverse stiffeners with several distances between stiffeners
(1200, 900, 600, 450, 300 and 150 mm)

» Longitudinal stiffeners

» Different steel grades: S275, S355, S460 and >S460
»Rigid and non-rigid end posts

» Welded and hot-rolled cross-sections

» Different steady-state temperatures: 20°C, 350°C, 500°C,
600°C and 700°C
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Parameters to be analysed in shear buckling study

» Different shear effort diagrams:

» Contribution from flanges to shear buckling

» Interaction between shear and bending moment
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