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About FDS

Developed by Kevin McGrattan at NIST for examining fire and
smoke movement in enclosed spaces such as atria, exhibition
halls, warehouses, tunnels, etc

—

Navier-Stokes solver
Turbulence Model
FDS consists of - Combustion Model

Radiation Model

— Boundary heat transfer

—
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About FDS

Navier-Stokes:
Mass Conservation
6/0 m
a7 T V - pu=nm,
Momentum Conservation
9 (pu) + V- puu + Vp = pg+ f, + V- 1,

Shear forces
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Navier-Stokes:
Mass Conservation
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About FDS

Navier-Stokes:
Mass Conservation

6 i
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Momentum Conservation

%(pu)—l—V-puu—l—Vp=,Og—|—fb—|—V-T[j

Energy Conservation

D
9 (ph) + V- phu = 75 +¢" = - ¢

Gas Equation (for closure)

P = ,ORspecT
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About FDS

e FDS solves a simplified version of Navier-Stokes, appropiate
for slow, buoyancy driven flows.

e Finite difference discretisation on a rectangular grid.

e Large Eddy Simulation (or DNS if required) for turbulences:
— Large eddies are solved directly.
— Subscale eddies are approximated (Smagorinsky).

e Mixture fraction combustion model:
— Infinite rate combustion.

e [wo approaches to model a fire:
— Prescribed HRR.
— "Fire spread".
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About FDS

e Free (download it from https://code.google.com/p/tds-smv/).
e Very easy to use (after this you'll be ready to go).
e |f used with caution, very powerful tool.

e But potentially dangerous if miss-used, or used without

proper analysis of the results
— e.g. Sprinkler - Fire interaction DOES NOT WORK!!
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Use FDS carefully...

e Hundreds of parameters that can be adjusted.

e Most of them require advanced knowledge of fire dynamics and
numerical methods.

e All of them come with a default...so you don’t have to adjust them.

e FDS offers many features that do not really work (fire spreadi
sprinklers). .

e |here is no general grid convergence!!

.
e Non-physical phenomena are common, but are often not recogh@ed.
— Example: Burning at openings.
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Use FDS carefully...

General Rule: GIGO!

Garbage In — Garbage Out
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Creating an Input File

e Plain text file. Any text editor will do..
e Crid, geometry and boundary conditions are defined here.

e Use an existing input file rather than creating a new one
from scratch.

e A valid line starts with an '&" — any line without it will not
be taken into account.

e A valid line has to finish with a "\".
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Creating an Input File

CHID — Naming the input file:

// Setup of FDS file
HEAD CHID=’First Example’, TITLE=’First Try’ /




Creating an Input File

The computational domain and grid:

// Setup of FDS file
HEAD CHID=’First Example’, TITLE=’First Try’ /

// Grid spacing FE
&MESH IJK=120,192,40, XB=0.0,12.0,0.0,19.0,0.0,4.0 /
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The computational domain and grid:

// Setup of FDS file
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// Grid spacing FE
&MESH IJK=120,192,40, XB=0.0,12.0,0.0,19.0,0.0,4.0 /

XbB = Xir Xt Yiy Yr, Ziy £f




Creating an Input File

Simulation time:

// Setup of FDS file
HEAD CHID=’First Example’, TITLE=’First Try’ /

// Grid spacing FE
&MESH IJK=120,192,40, XB=0.0,12.0,0.0,19.0,0.0,4.0 /

// Simulation time
&TIME T _END=10. /




Creating an Input File

Simulation time:

// Setup of FDS file
HEAD CHID=’First Example’, TITLE=’First Try’ /

// Grid spacing \|
&MESH IJK=120,192,40, XB=0.0,12.0,0.0,19.0,0.0,4.0 /

-

// Simulation time
4TIME T END=10. ,; U set to 0, only geometry is checked‘

R o
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Creating an Input File

Miscellaneous:

// General Parameters
&MISC SURF_DEFAULT=’CONCRETE’, RADIATION=.FALSE.,TMPA=25.,
RESTART=.TRUE. /
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Creating an Input File

Control:

// General Parameters
&EMISC SURF_DEFAULT=’CONCRETE’, RADIATION=.FALSE.,TMPA=25.,
RESTART=.TRUE. /

// Control Parameters
&DUMP DT_RESTART=100.,NFRAMES=1800 /




Creating an Input File

Control:

// General Parameters
&EMISC SURF_DEFAULT=’CONCRETE’, RADIATION=.FALSE.,TMPA=25.,

RESTART=.TRUE. / ,
)

// Control Parameters
&DUMP DT_RESTART=100.,DT_DEVC=5.,DT_SLCF=10. /
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Defining the Geometry

Obstacles:
Walls, furniture, doors etc. are all defined using rectangle
blockages

// Creating obstacles

%OBST XB=6.2,6.4,1.6,6.,/

from 7 to 7
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e The obstruction is a boundary condition to the flow (free slip)

e What about thermal boundary conditions (to calculate heat
fluxes, wall temperatures)?

Surfaces and Materials

&SURF ID=’Wall’ ,MATL_ID=’Paper’,’Concrete’, 'E
THICKNESS=0.001,0.3,BACKING="EXPOSED”/
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Surfaces and Materials

&SURF ID=’Wall’ ,MATL_ID=’Paper’,’Concrete’, ‘{
THICKNESS=0.001,0.3,BACKING="EXPOSED”/
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Boundary Conditions

e The obstruction is a boundary condition to the flow (free slip)

e What about thermal boundary conditions (to calculate heat
fluxes, wall temperatures)?

Surfaces and Materials

&SURF ID=’Wall’,MATL_ID=’Paper’,’Concrete’, &
THICKNESS=0.001,0.3,BACKING="EXPOSED "/

&MATL ID=’Paper’,CONDUCTIVITY=0.12, P
SPECIFIC_HEAT=1.172 ,DENSITY=128./

&MATL ID=’Concrete’,CONDUCTIVITY=1.7, <;;
SPECIFIC_HEAT=0.75,DENSITY=2400./

J
7
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e S| units.
e Every Surface needs an ID associated to it.

e Can be applied directly to an obstacle (all surfaces have
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e Or to a certain part of surface: '\1
— &VENT XB=6.2,6.2,1.6,6.6,0.0,2.4,SURF_ID="WOOD’\




Boundary Conditions

e S| units.
e Every Surface needs an ID associated to it.

e Can be applied directly to an obstacle (all surfaces have
same D).

\

B

e Or to a certain part of surface:
— &VENT XB=6.2,6.2,1.6,6.6,0.0,2.4,SURF_ID="W0O0OD’\

e [he BCs of the Computational domain have to defined:
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Boundary Conditions

e S| units.
e Every Surface needs an ID associated to it.

e Can be applied directly to an obstacle (all surfaces have
same D).

A
i

e Or to a certain part of surface:
— &VENT XB=6.2,6.2,1.6,6.6,0.0,2.4,SURF_ID="W0O0OD’\

e [he BCs of the Computational domain have to defined:
// All domain boundaries initially exposed
&VENT MB=’XMIN’,SURF_ID=’0PEN’/
VENT MB=’XMAX’,SURF_ID=’0PEN’/
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e Special case of Boundary Condition
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SURF 1D

e HRRPUA, RAMP
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The Fire

e Special case of Boundary Condition

'
SURF 1D

e HRRPUA, RAMP
&SURF ID=’MyFire’ ,HRRPUA=700,RAMP_Q=’MyRamp’\

A
&RAMP ID=’MyRamp’,T=0,F=0.0/

&RAMP ID=’MyRamp’,T=80,F=0.2/

./. >
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The Fire

e Special case of Boundary Condition

'
SURF 1D

e HRRPUA, RAMP
&SURF ID=’MyFire’ ,HRRPUA=700,RAMP_Q=’MyRamp’\
A
&RAMP ID=’>MyRamp’,T=0,F=0.0/
&RAMP ID=’>MyRamp’,T=80,F=0.2/
&RAMP ID=’MyRamp’,T=120,F=0.5/

>
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The Fire

e Special case of Boundary Condition

'
SURF 1D

e HRRPUA, RAMP
&SURF ID=’MyFire’ ,HRRPUA=700,RAMP_Q=’MyRamp’\
&RAMP ID=’MyRamp’,T=0,F=0.0/ !
&RAMP ID=’MyRamp’,T=80,F=0.2/
&RAMP ID=’MyRamp’,T=120,F=0.5/
&RAMP ID=’MyRamp’,T=150,F=1.0/
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The Fire

e Fuel is injected at such rate that, if burnt, produces HRRPUA

e Adding HRRPUA and TMPIGN to any surface converts it into a fire
when TMPIGN is reached.—Carful with that!

e Alternatively you can prescribe MLRPUA. This will produce injection
of gas at a rate ot MLRPUA, which will burn it it finds adequate

conditions. -

e A radially spreading fire can be prescribed by:
&VENT XB=0.0,5.0,1.5,9.5,0.0,0.0,SURF_ID="FIRE’,
XYZ=1.5,4.0,0.0,SPREAD_RATE=0.03/ ™

B
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The Fire

e Fuel is injected at such rate that, if burnt, produces HRRPUA

e Adding HRRPUA and TMPIGN to any surface converts it into a fire
when TMPIGN is reached.—Carful with that!

e Alternatively you can prescribe MLRPUA. This will produce injection
of gas at a rate of MLRPUA, which will burn if it finds adequate

conditions. -

e A radially spreading fire can be prescribed by:
&VENT XB=0.0,5.0,1.5,9.5,0.0,0.0,SURF_ID="FIRE’,
XYZ=1.5,4.0,0.0,SPREAD_RATE=0.03/ ™

-

e You can also define pyrolysis parameters and get FDS to mimic a
‘real’ fire.
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The Fire

e Fuel is injected at such rate that, if burnt, produces HRRPUA

e Adding HRRPUA and TMPIGN to any surface converts it into a fire
when TMPIGN is reached.—Carful with that!

e Alternatively you can prescribe MLRPUA. This will produce injection
of gas at a rate of MLRPUA, which will burn if it finds adequate

conditions. -

e A radially spreading fire can be prescribed by:
&VENT XB=0.0,5.0,1.5,9.5,0.0,0.0,SURF_ID="FIRE’,
XYZ=1.5,4.0,0.0,SPREAD_RATE=0.03/ ™

-

e You can also define pyrolysis parameters and get FDS to mimic a
‘real’ fire. —VERY Carful with that!
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Other BCs

e Mechanical ventilation (i.e. fancoils) can be modelled as air-flow
coming into or leaving the domain.

e [he flow "disappears’ ("appears’) at the boundary.

Air supply:

&SURF ID=’SUPPLY’, VEL=-1.2, COLOR=’BLUE’ /
%VENT XB=5.0,5.0,1.0,1.4,2.0,2.4, SURF_ID=’SUPPLY’ /
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Other BCs

e Mechanical ventilation (i.e. fancoils) can be modelled as air-flow
coming into or leaving the domain.

e [he flow "disappears’ ("appears’) at the boundary.

Air supply:

&SURF ID=’SUPPLY’, VEL=-1.2, COLOR=’BLUE’ /
%VENT XB=5.0,5.0,1.0,1.4,2.0,2.4, SURF_ID=’SUPPLY’ /

Exhaust: | =

"o
&SURF ID=’EXHAUST’, VEL=1.2, COLOR=’RED’ / M

&VENT XB=5.0,5.0,1.8,3.3,2.0,2.4, SURF_ID= ’EXHAUST’
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— It a volume is given instead of a point, an integrated quantity is
recorded (HRR, Average Temperature)

e Point "'measurements’ are recorded in spreadsheet format
(CHID_devc.csv)
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Manage the Output

e Point "measurements’ are obtained by adding "measuring" Devices:
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Manage the Output

e Point "measurements’ are obtained by adding "measuring" Devices:
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recorded (HRR, Average Temperature)
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Manage the Output

e Point "measurements” are obtained by adding "measuring" Devices:

— &DEVC XYZ=2.0,6.4,0.0,QUANTITY=>TEMPERATURE’/

— It a volume is given instead of a point, an integrated quantity is
recorded (HRR, Average Temperature)

e Point "'measurements’ are recorded in spreadsheet format
(CHID_devc.csv)

e Devices (DEVC) can also be used to control actions:
— Smoke detectors, Sprinklers etc.

e Add SETPOINT to DEVC line:
&DEVC XYZ=0,0,0,ID="Clock’,QUANTITY="TIME’ ,SETPOINT=30.,INITIAL_STATE=. T;@/
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Manage the Output

e Point "measurements’ are obtained by adding "measuring” Devices:

— &DEVC XYZ=2.0,6.4,0.0,QUANTITY=">TEMPERATURE’ /

— It a volume is given instead of a point, an integrated quantity is
recorded (HRR, Average Temperature)

e Point "'measurements’ are recorded in spreadsheet format
(CHID_devc.csv)

e Devices (DEVC) can also be used to control actions:
— Smoke detectors, Sprinklers etc.

e Add SETPOINT to DEVC line and link it to other ittem: <\
&DEVC XYZ=0,0,0,ID=’Clock’ ,QUANTITY="TIME’ ,SETPOINT=30.,INITIAL_STATE=. T@/
&0BST XB=. ,SURF_ID="’ > DEVC_ID=’Clock’/
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e Slice Files:
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Manage the Output

e Slice Files:
— &SLCF (PBZ=0.45)QUANTITY=">TEMPERATURE’ ,VECTOR=.TRUE. /

Plane parallel to z = 0.45
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e Slice Files:
— &SLCF PBZ=0.45,QUANTITY=’TEMPERATURE’ ,VECTOR=.TRUE./
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Manage the Output

e Slice Files:
— &SLCF PBZ=0.45,QUANTITY=’TEMPERATURE’ ,VECTOR=.TRUE. /

e Boundary Files:
— &BNDF QUANTITY=’TEMPERATURE’/

— Define BNDF_DEFAULT=.FALSE. on the MISC line in order- to avoid
tLnnecessary output. .

— Define BNDF_0BST=.TRUE. on an OBST line you want to see.
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Manage the Output

e Slice Files:
— &SLCF PBZ=0.45,QUANTITY=’TEMPERATURE’ ,VECTOR=.TRUE./

e Boundary Files:
— &BNDF QUANTITY=’TEMPERATURE’/

— Define BNDF_DEFAULT=.FALSE. on the MISC line in order.to avoid
tLnnecessary output. .

— Define BNDF_0BST=.TRUE. on an OBST line you want to see.

| A
e Information contained in the slice files can be exported into

spreadsheet format if required (using fds2ascii, which can-bé\
downloaded from the FDS website). »
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Finally...

e The last line in an FDSV5 input file is '&TAIL/":




Finally...

e The last line in an FDSV5 input file is '&TAIL/":

b

6
4,

&O0BST XB=5. ,5.8,6.6,0.0, ,SURF_ID="WALL’/
&O0BST XB=5. 1.6,5.8,0.0, S

6.2 2.0
6.2 2.0,SURF_ID="WALL’/

b

&SURF ID=’WALL’, MATL_ID=’...°... {

&MATL ID=’...°..../

&SLCF PBZ=0.45,QUANTITY=’TEMPERATURE’ ,VECTOR=.TRUE. / P

&TAIL/ o\

-
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e If you run OS X or GNU/Linux, open a terminal.
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How to run FDS?

e If you run OS X or GNU/Linux, open a terminal.
e |f you run Windows, open cmd window.

e Change directory to where your input file is (cd
/to/your/fds/example/path)

e Once in your working directory run FDS by typing:
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