Travelling Fires for the Structural Design of Modern Buildings

Egle Rackauskaite, Guillermo Rein
Imperial College London, Department of Mechanical Engineering
TRAVELLING FIRES?

- Current Design Codes

AIM of this research

Develop tools to design structures to resist travelling fires

Limitations:
- Floor areas $< 500 \text{ m}^2$
- Heights $< 4 \text{ m}$

Only 8% of volume within limitations

- Large open-plan compartments - ?
TRAVELLING FIRES METHODOLOGY

- Developed by Stern-Gottfried, Law and Rein

Near-Field
Flames → short and hot

\[T_{nf} = 1200^\circ C \]

Far-Field
Smoke → long and cool

\[T_{ff}(x,t) = T_\infty + \frac{5.38}{H} \left(\frac{L L^*_t W \dot{Q}^*}{x + 0.5 L L^*_t - \dot{x}_t} \right)^{2/3} \]

Distance (m)

0 7 14 21 28 35 42

Gas Temperature (°C)

0 400 800 1200

Burnt out fuel ↓

Flame spreads

\(T_{nf} \) Near field

\(T_{ff} \) Far field

\(H \)
TRAVELLING FIRES METHODOLOGY

Short and hot ~1200°C for 20 min

Near field

Initial Far Field Heating

Posterior Far Field Heating

Long and cold ~100-600°C for hours

Time
RESEARCH OBJECTIVES

WORK DONE
• Continuous analytical correlation
• Flame flapping region

FUTURE
• More realistic near field temperature
• To investigate different fire paths in complex geometries
• Application of TFM to timber, concrete and steel members
• Analysis of simple frames

Thank You!