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� Fire analysis of simply supported steel and composite steel-
concrete elements:

� simply supported steel beam

� fully restrained steel beam

� steel frame

� simply supported composite steel-concrete beam

� Different software:

� Vulcan (University of Sheffield)

� Fire, CompositeFire, HeatMoisture (University of Ljubljana)
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Fire
analysis

Fire 
Scenario

Temperature
and moisture 
distribution

Mechanical 
response

� Temperature and moisture analysis of a composite beam

� Mathematical model proposed by Davie et. al. is used.

� Basic assumptions of the used model:

� There is thermal equilibrium between all phases within an infinitesimal 
volume.

� Water vapour, air and their gaseous mixture behave as ideal gases.

� There is no diffusion of bound water. It diffuses and evaporates only after it is 
released as free water.

� Amount of free water is determined with the help of sorption curves. 

� Primary unknowns: temperature T, pore pressure PG, water vapour 
content ρV.

� Finite element formulation in Matlab environment
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� Reissner’s geometrically exact beam theory.

� Shear strains are neglected.

� Stress-strain state is determined iteratively, where the calculation
time is divided into time intervals [ti-1,ti]

� The element is subjected to a conservative, time independent 
load, and a time-dependent growth of temperature.

� Additive decomposition of the increment of geometric strain on the
increment of elastic, plastic, temperature, transient and creep strain

� FEM in Matlab environment

� Three-dimensional frame analysis program � behaviour of skeletal 
steel and composite frames under fire conditions

�Geometric and material non-linearities are included
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� EN 1993-1-2

creep implicitly included

� Bilinear (Srpčič,1991)

+explicitly creep of steel (Williams-Leir 1983):

type of steel Austin50

 ( )2
cr,s s 1 2 cr,s( ) cothsign b b tε σ ε∆ = ⋅ ⋅ ⋅ ⋅∆

� Reduction factors
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Vulcan Fire

Load 20 and 40 kN/m

Fire scenario BS476

Temp. pattern EN 1993-1-2 (2005) 

Modulus of 
elasticity

21000 kN/cm2

Strength of
steel

S275

Stress-strain EC3
EC3 and

Bilinear+Creep

� Midspan displacement, Load 20 kN/m
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� Midspan displacement, Load 40 kN/m
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� Midspan displacement, Load 20 kN/m
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� Midspan displacement, Load 40 kN/m
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Vulcan Fire

Load 30 kN/m

Temp. pattern EN 1993-1-2 (2005) 

Modulus of
elasticity

21000 kN/cm2

Strength of
steel

S275

Stress-strain EC3
EC3 and

Bilinear+Creep
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� Midspan displacement
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� Axial force in beam
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Vulcan CompositeFire

Load 3 × 10 kN

Temp. pattern
EC3 –steel

Bilinear model - concrete
HeatMoisture

ES 21000 kN/cm2

EC 3300 kN/cm2

Steel S275

Concrete 3.5 kN/cm2

Stress-strain (steel) EC3

Shear connection Rigid

� Midspan displacement
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�The comparison shows good agreement between the results, small
deviation can be observed only in the vertical displacement of the
composite beam.


